论文标题
通过建模上下文依赖性建模准确的二进制神经网络
Towards Accurate Binary Neural Networks via Modeling Contextual Dependencies
论文作者
论文摘要
现有的二进制神经网络(BNN)主要在具有二进制功能的本地卷积上运行。但是,这种简单的位操作缺乏建模上下文依赖性的能力,这对于在视觉模型中学习歧视性深度表示至关重要。在这项工作中,我们通过介绍二元神经模块的新设计来解决此问题,这使BNN能够学习有效的上下文依赖性。首先,我们提出了一个二进制多层感知器(MLP)块作为二进制卷积块的替代方案,以直接建模上下文依赖性。短距离和远距离特征依赖性均由二进制MLP建模,其中前者提供局部电感偏置,后者在二元卷积中有限的接受场有限。其次,为了改善具有上下文依赖性的二进制模型的鲁棒性,我们计算上下文动态嵌入,以确定一般二进制卷积块中的二进制阈值。通过我们的二进制MLP块和改进的二元卷积,我们用明确的上下文依赖性建模构建了BNN,称为BCDNET。在标准Imagenet-1K分类基准上,BCDNET可实现72.3%的TOP-1准确性,并且优于领先的二进制方法的差距很大。特别是,提出的BCDNET超过了最先进的ReactNet-A,并且具有相似的操作,超过2.9%的TOP-1准确性。我们的代码可从https://github.com/sense-gvt/bcdn获得
Existing Binary Neural Networks (BNNs) mainly operate on local convolutions with binarization function. However, such simple bit operations lack the ability of modeling contextual dependencies, which is critical for learning discriminative deep representations in vision models. In this work, we tackle this issue by presenting new designs of binary neural modules, which enables BNNs to learn effective contextual dependencies. First, we propose a binary multi-layer perceptron (MLP) block as an alternative to binary convolution blocks to directly model contextual dependencies. Both short-range and long-range feature dependencies are modeled by binary MLPs, where the former provides local inductive bias and the latter breaks limited receptive field in binary convolutions. Second, to improve the robustness of binary models with contextual dependencies, we compute the contextual dynamic embeddings to determine the binarization thresholds in general binary convolutional blocks. Armed with our binary MLP blocks and improved binary convolution, we build the BNNs with explicit Contextual Dependency modeling, termed as BCDNet. On the standard ImageNet-1K classification benchmark, the BCDNet achieves 72.3% Top-1 accuracy and outperforms leading binary methods by a large margin. In particular, the proposed BCDNet exceeds the state-of-the-art ReActNet-A by 2.9% Top-1 accuracy with similar operations. Our code is available at https://github.com/Sense-GVT/BCDN