论文标题
正交和线性回归以及共聚焦尺寸的铅笔
Orthogonal and Linear Regressions and Pencils of Confocal Quadrics
论文作者
论文摘要
本文增强并发展了统计,力学和几何形状之间的桥梁。对于代表全等级样本的$ \ Mathbb r^k $中给定的点系统,我们构建了具有以下特性的明确的共聚焦四边形铅笔:(i)给定点系统的惯性超平面矩的所有超平面矩相等的超平面矩与Quadrics Perner of Quadrics perner的相同Quadrics均相同。作为一种应用,我们为正交最小二乘法,Lasso和Ridge方法的类似物开发了正则化程序,并从线性回归中进行了类似程序。 (ii)对于所有包含它的超级平面中的任何给定点$ p $,最佳拟合是从共聚焦铅笔到四边形的切线超平面,与点$ p $的最大雅各比坐标相对应;包含$ p $的超平面中最糟糕的拟合是从包含$ p $的共聚焦铅笔上椭圆形的切线超平面。四边形的共聚焦铅笔提供了一种通用工具,可以解决在任何给定点限制的受限制的主组件分析。两种结果(i)和(ii)都可以看作是皮尔森(Pearson)正交回归的经典结果的概括。它们在变异模型错误模型(EIV)的统计数据中具有自然和重要的应用。对于经典的线性回归,我们提供了所有包含给定点的超平方沿给定方向上最小二乘的超平方的超平面的几何表征。所获得的结果在限制回归中,包括普通和正交的结果。对于后者,得出了一个新的测试统计公式。在自然统计示例中说明了开发的方法和结果。
This paper enhances and develops bridges between statistics, mechanics, and geometry. For a given system of points in $\mathbb R^k$ representing a sample of full rank, we construct an explicit pencil of confocal quadrics with the following properties: (i) All the hyperplanes for which the hyperplanar moments of inertia for the given system of points are equal, are tangent to the same quadrics from the pencil of quadrics. As an application, we develop regularization procedures for the orthogonal least square method, analogues of lasso and ridge methods from linear regression. (ii) For any given point $P$ among all the hyperplanes that contain it, the best fit is the tangent hyperplane to the quadric from the confocal pencil corresponding to the maximal Jacobi coordinate of the point $P$; the worst fit among the hyperplanes containing $P$ is the tangent hyperplane to the ellipsoid from the confocal pencil that contains $P$. The confocal pencil of quadrics provides a universal tool to solve the restricted principal component analysis restricted at any given point. Both results (i) and (ii) can be seen as generalizations of the classical result of Pearson on orthogonal regression. They have natural and important applications in the statistics of the errors-in-variables models (EIV). For the classical linear regressions we provide a geometric characterization of hyperplanes of least squares in a given direction among all hyperplanes which contain a given point. The obtained results have applications in restricted regressions, both ordinary and orthogonal ones. For the latter, a new formula for test statistic is derived. The developed methods and results are illustrated in natural statistics examples.