论文标题

关于基于细胞的NAS体系结构的隐私风险

On the Privacy Risks of Cell-Based NAS Architectures

论文作者

Huang, Hai, Zhang, Zhikun, Shen, Yun, Backes, Michael, Li, Qi, Zhang, Yang

论文摘要

关于神经体系结构搜索(NAS)的现有研究主要集中于有效地搜索具有更好性能的网络体系结构。几乎没有取得进展,以系统地了解NAS搜索的架构是否对隐私攻击是可靠的,而丰富的工作已经表明,人类设计的架构容易受到隐私攻击。在本文中,我们填补了这一空白,并系统地衡量了NAS体系结构的隐私风险。利用我们的测量研究中的见解,我们进一步探讨了基于细胞的NAS架构的细胞模式,并评估细胞模式如何影响NAS搜索架构的隐私风险。通过广泛的实验,我们阐明了如何设计可抵制隐私攻击的强大NAS体系结构,还提供了一种一般方法,以了解NAS搜索的体系结构与其他隐私风险之间的隐藏相关性。

Existing studies on neural architecture search (NAS) mainly focus on efficiently and effectively searching for network architectures with better performance. Little progress has been made to systematically understand if the NAS-searched architectures are robust to privacy attacks while abundant work has already shown that human-designed architectures are prone to privacy attacks. In this paper, we fill this gap and systematically measure the privacy risks of NAS architectures. Leveraging the insights from our measurement study, we further explore the cell patterns of cell-based NAS architectures and evaluate how the cell patterns affect the privacy risks of NAS-searched architectures. Through extensive experiments, we shed light on how to design robust NAS architectures against privacy attacks, and also offer a general methodology to understand the hidden correlation between the NAS-searched architectures and other privacy risks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源