论文标题

朋友和trangers图的连接性和周期空间

Connectedness and Cycle Spaces of Friends-and-Strangers Graphs

论文作者

Defant, Colin, Dong, David, Lee, Alan, Wei, Michelle

论文摘要

如果$ x =(v(x),e(x))$和$ y =(v(y),e(y))$是$ n $ vertex图形,那么他们的朋友和trangers grappl $ \ mathsf {fs}(x,y)$是图形的图表,其the the Gratices是从$ v(x)$ v(x)$ v(y)$ v(y)$ v(y)$ v(y)$ s的ftertices,则只有在e(x)$中有一个边缘$ \ {a,b \} \,以便$ \ {σ(a),σ(b)\} \ in E(y)$和$σ'=σ\ circ(a \,\,\,b)$,whene $(a \,\,b)$ nes $ a $ v(b)我们证明了为$ \ mathsf {fs}(x,y)$提供必要和/或足够条件的一般定理。作为推论,我们获得了图$ y $的完整表征,因此连接了$ \ m ythsf {fs}(\ mathsf {dand} _ {k,n},y)$,其中$ \ mathsf {dand} _ {dand} _ {k,n} $是蒲公英图;这实质上概括了第一作者的定理和kravitz在$ k = 3 $的情况下。对于$ y $的特定选择,我们表征了蜘蛛图$ x $,以便连接$ \ mathsf {fs}(x,y)$。从不同的角度来看,我们研究了朋友和trangers图的周期空间。 Naatz证明,如果$ x $是一个路径图,则$ \ mathsf {fs}(x,y)$的周期空间将由$ 4 $ -CYCLES和$ 6 $ -CYCLES跨度;我们表明,当$ x $是一个周期,$ y $具有至少$ 3 $时,同一陈述会成立。当$ x $是一个周期,而$ y $具有至少$ 2 $的统治号码时,我们的证明阐明了在某些Coxeter Moves下行动$ \ Mathsf {fs}(fs}(x,y)$。

If $X=(V(X),E(X))$ and $Y=(V(Y),E(Y))$ are $n$-vertex graphs, then their friends-and-strangers graph $\mathsf{FS}(X,Y)$ is the graph whose vertices are the bijections from $V(X)$ to $V(Y)$ in which two bijections $σ$ and $σ'$ are adjacent if and only if there is an edge $\{a,b\}\in E(X)$ such that $\{σ(a),σ(b)\}\in E(Y)$ and $σ'=σ\circ (a\,\,b)$, where $(a\,\,b)$ is the permutation of $V(X)$ that swaps $a$ and $b$. We prove general theorems that provide necessary and/or sufficient conditions for $\mathsf{FS}(X,Y)$ to be connected. As a corollary, we obtain a complete characterization of the graphs $Y$ such that $\mathsf{FS}(\mathsf{Dand}_{k,n},Y)$ is connected, where $\mathsf{Dand}_{k,n}$ is a dandelion graph; this substantially generalizes a theorem of the first author and Kravitz in the case $k=3$. For specific choices of $Y$, we characterize the spider graphs $X$ such that $\mathsf{FS}(X,Y)$ is connected. In a different vein, we study the cycle spaces of friends-and-strangers graphs. Naatz proved that if $X$ is a path graph, then the cycle space of $\mathsf{FS}(X,Y)$ is spanned by $4$-cycles and $6$-cycles; we show that the same statement holds when $X$ is a cycle and $Y$ has domination number at least $3$. When $X$ is a cycle and $Y$ has domination number at least $2$, our proof sheds light on how walks in $\mathsf{FS}(X,Y)$ behave under certain Coxeter moves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源