论文标题

抛物线抛物线凯勒 - 塞格模型的粒子近似值的平均场极限

Mean-field limit of a particle approximation for the parabolic-parabolic Keller-Segel model

论文作者

Chen, Li, Wang, Shu, Yang, Rong

论文摘要

在本文中,我们通过建立从随机粒子系统到抛物线抛物性抛物性keller-segel-segel-segel-segel-segel(ks)方程的严格合并分析,研究了与对数截止的抛物线抛物性凯勒 - segel模型的混乱传播。假设初始数据是独立的,并且具有共同概率密度函数$ρ_0$的相同分布(i.i.d。),我们严格地证明了这种相互作用系统的混乱传播,其截止参数$ \ varepsilon \ varepsilon \ sim(\ ln n n)粒子系统的联合分布为$ f $ chaotic,尺寸$ f $具有密度,这是对平均场抛物线抛物线KS方程的弱解决方案。

In this paper, we study propagation of chaos for the parabolic-parabolic Keller-Segel model with a logarithmic cut-off by establishing a rigorous convergence analysis from a stochastic particle system to the parabolic-parabolic Keller-Segel (KS) equation for any dimension case. Under the assumption that the initial data are independent and identically distributed (i.i.d.) with a common probability density function $ρ_0$, we rigorously prove the propagation of chaos for this interacting system with a cut-off parameter $\varepsilon\sim (\ln N)^{-\frac{2}{d+2}}$: when $N\rightarrow \infty$, the joint distribution of the particle system is $f$-chaotic and the measure $f$ possesses a density which is a weak solution to the mean-field parabolic-parabolic KS equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源