论文标题

部分可观测时空混沌系统的无模型预测

ScaleFace: Uncertainty-aware Deep Metric Learning

论文作者

Kail, Roman, Fedyanin, Kirill, Muravev, Nikita, Zaytsev, Alexey, Panov, Maxim

论文摘要

现代深度学习系统的性能极大地取决于输入对象的质量。例如,对于模糊或损坏的输入,面部识别质量将较低。但是,在更复杂的情况下,很难预测输入质量对所得准确性的影响。我们提出了一种深度度量学习的方法,该方法几乎没有额外的计算成本,可以直接估算不确定性。开发的\ textit {scaleface}算法使用可训练的比例值,以修改嵌入式空间中的相似性。这些依赖于输入的比例值代表了对识别结果的信心的度量,从而允许估计不确定性。我们提供了有关面部识别任务的全面实验,这些实验表明与其他不确定性感知的面部识别方法相比,比例表面的表现出色。我们还将结果扩展到文本对图像检索的任务,表明所提出的方法以显着的利润击败了竞争对手。

The performance of modern deep learning-based systems dramatically depends on the quality of input objects. For example, face recognition quality would be lower for blurry or corrupted inputs. However, it is hard to predict the influence of input quality on the resulting accuracy in more complex scenarios. We propose an approach for deep metric learning that allows direct estimation of the uncertainty with almost no additional computational cost. The developed \textit{ScaleFace} algorithm uses trainable scale values that modify similarities in the space of embeddings. These input-dependent scale values represent a measure of confidence in the recognition result, thus allowing uncertainty estimation. We provide comprehensive experiments on face recognition tasks that show the superior performance of ScaleFace compared to other uncertainty-aware face recognition approaches. We also extend the results to the task of text-to-image retrieval showing that the proposed approach beats the competitors with significant margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源