论文标题

部分可观测时空混沌系统的无模型预测

Quantifying nanoscale charge density features of contact-charged surfaces with an FEM/KPFM-hybrid approach

论文作者

Pertl, Felix, Sobarzo, Juan Carlos, Shafeek, Lubuna, Cramer, Tobias, Waitukaitis, Scott

论文摘要

开尔文探针力显微镜(KPFM)是用于研究纳米级接触电气化的强大工具,但是将KPFM电压图转换为电荷密度图是由于远距离力和复杂的系统几何形状而造成的。在这里,我们提出了使用有限元方法(FEM)模拟来确定KPFM探针/绝缘子/接地系统的绿色功能的策略,该策略使我们能够定量提取表面电荷。通过合成数据测试我们的方法,我们发现对AFM尖端,锥和悬臂的核算对于恢复已知输入是必要的,并且通常应用启发式方法和近似值会导致严重的错误计算。将其应用于实验数据,我们证明了其从接触带电的表面中提取逼真的表面电荷密度和细节的能力。我们的方法提供了一个直接的配方,可以在一系列实验条件下将定性KPFM电压数据转换为定量电荷数据,从而在纳米级实现定量接触电气化实验。

Kelvin probe force microscopy (KPFM) is a powerful tool for studying contact electrification at the nanoscale, but converting KPFM voltage maps to charge density maps is non-trivial due to long-range forces and complex system geometry. Here we present a strategy using finite element method (FEM) simulations to determine the Green's function of the KPFM probe/insulator/ground system, which allows us to quantitatively extract surface charge. Testing our approach with synthetic data, we find that accounting for the AFM tip, cone and cantilever are necessary to recover a known input, and that commonly applied heuristics and approximations lead to gross miscalculation. Applying it to experimental data, we demonstrate its capacity to extract realistic surface charge densities and fine details from contact charged surfaces. Our method gives a straightforward recipe to convert qualitative KPFM voltage data into quantitative charge data over a range of experimental conditions, enabling quantitative contact electrification experiments at the nanoscale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源