论文标题

在数字场上,还原群体的GALOIS共同体中定位的溢流性标准

Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field

论文作者

Borovoi, Mikhail, Rosengarten, Zev

论文摘要

让$ g $是一个在数字字段$ f $上的连接还原组,让$ s $是$ f $的位置(有限或无限)。我们给出了必要且充分的条件,以从$ h^1(f,g)$溢出到集合$ h^1(f_v,g)$的“直接总和”,其中$ v $在$ s $上运行。在附录中,我们为一个任意特征领域的还原群体的Abelian Galois共同学提供了新的结构。

Let $G$ be a connected reductive group over a number field $F$, and let $S$ be a set (finite or infinite) of places of $F$. We give a necessary and sufficient condition for the surjectivity of the localization map from $H^1(F,G)$ to the "direct sum" of the sets $H^1(F_v,G)$ where $v$ runs over $S$. In the appendices, we give a new construction of the abelian Galois cohomology of a reductive group over a field of arbitrary characteristic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源