论文标题

双曲线组的泊松边界没有瞬间条件

The Poisson boundary of hyperbolic groups without moment conditions

论文作者

Chawla, Kunal, Forghani, Behrang, Frisch, Joshua, Tiozzo, Giulio

论文摘要

我们证明,可以用其双曲线边界识别出有限熵的随机行走的泊松边界,而无需假设量度上的任何力矩条件。我们还将我们的方法扩展到在包含WPD元素的双曲线度量空间上采用异构体作用的组;这适用于大型的非纤维基团,例如相对双曲线组,映射类组和作用于CAT(0)空间的组。

We prove that the Poisson boundary of a random walk with finite entropy on a non-elementary hyperbolic group can be identified with its hyperbolic boundary, without assuming any moment condition on the measure. We also extend our method to groups with an action by isometries on a hyperbolic metric space containing a WPD element; this applies to a large class of non-hyperbolic groups such as relatively hyperbolic groups, mapping class groups, and groups acting on CAT(0) spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源