论文标题

激光惯性进程仪的因子图加速器

Factor Graph Accelerator for LiDAR-Inertial Odometry

论文作者

Hao, Yuhui, Yu, Bo, Liu, Qiang, Liu, Shaoshan, Zhu, Yuhao

论文摘要

因子图是代表概率分布函数分解的图形,并且已在许多自动机器计算任务中使用,例如本地化,跟踪,计划和控制等。我们正在开发一个架构,其目标是将因子图作为大多数(如果不是)的常见抽象(如果不是),如果不是,则所有自主机计算任务。如果成功,则该体系结构将为基础计算硬件提供映射自动机函数的非常简单的接口。作为此类尝试的第一步,本文介绍了我们最新的工作,即开发了激光惯性射测(LIO)的因素图加速器,这是许多自动机器(例如自动驾驶汽车和移动机器人)的重要任务。通过将LIO建模为因子图,所提出的加速器不仅支持多传感器融合,例如LIDAR,惯性测量单元(IMU),GPS等,而且解决了批次或增量模式的机器人导航的全局优化问题。我们的评估表明,拟议的设计显着提高了自动驾驶机器导航系统的实时性能和能源效率。最初的成功表明,将因子图架构概括为自动机器计算的常见抽象的潜力,包括跟踪,计划和控制等。

Factor graph is a graph representing the factorization of a probability distribution function, and has been utilized in many autonomous machine computing tasks, such as localization, tracking, planning and control etc. We are developing an architecture with the goal of using factor graph as a common abstraction for most, if not, all autonomous machine computing tasks. If successful, the architecture would provide a very simple interface of mapping autonomous machine functions to the underlying compute hardware. As a first step of such an attempt, this paper presents our most recent work of developing a factor graph accelerator for LiDAR-Inertial Odometry (LIO), an essential task in many autonomous machines, such as autonomous vehicles and mobile robots. By modeling LIO as a factor graph, the proposed accelerator not only supports multi-sensor fusion such as LiDAR, inertial measurement unit (IMU), GPS, etc., but solves the global optimization problem of robot navigation in batch or incremental modes. Our evaluation demonstrates that the proposed design significantly improves the real-time performance and energy efficiency of autonomous machine navigation systems. The initial success suggests the potential of generalizing the factor graph architecture as a common abstraction for autonomous machine computing, including tracking, planning, and control etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源