论文标题

定期紧张石墨烯的网络模型

Network model for periodically strained graphene

论文作者

De Beule, Christophe, Phong, Vo Tien, Mele, E. J.

论文摘要

在周期性应变场的存在下,单层石墨烯的长波长物理具有自然的手性散射网络描述。当应变场与石墨烯晶格和诱导山谷伪磁场的有效磁长相比缓慢变化时,可以从谷极化的渗透域壁模式来理解低能物理学。受最近实验的启发,我们考虑了一个具有三倍旋转和镜子对称性的应变场,但没有双重旋转对称性,从而导致具有定向Kagome网络连通性的系统。该网络中的散射过程由对称约束的现象学$ S $矩阵捕获。我们分析了kagome网络的相图,并表明当我们在电荷中立时考虑渗透过渡时,网络可以定性地捕获应变石墨烯的批量物理。我们还讨论了这种方法正确说明边界物理学的局限性。

The long-wavelength physics of monolayer graphene in the presence of periodic strain fields has a natural chiral scattering network description. When the strain field varies slowly compared to the graphene lattice and the effective magnetic length of the induced valley pseudomagnetic field, the low-energy physics can be understood in terms of valley-polarized percolating domain-wall modes. Inspired by a recent experiment, we consider a strain field with threefold rotation and mirror symmetries but without twofold rotation symmetry, resulting in a system with the connectivity of the oriented kagome network. Scattering processes in this network are captured by a symmetry-constrained phenomenological $S$ matrix. We analyze the phase diagram of the kagome network, and show that the bulk physics of the strained graphene can be qualitatively captured by the network when we account for a percolation transition at charge neutrality. We also discuss the limitations of this approach to properly account for boundary physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源