论文标题

BBH合并引力波信号检测的联合率率频率频率变换

A Joint-Chirp-Rate-Time-Frequency Transform for BBH Merger Gravitational Wave Signal Detection

论文作者

Li, Xiyuan, Houde, Martin, Mohanty, Jignesh, Valluri, S. R.

论文摘要

二进制黑洞(BBH)和二进制中子星(BNS)合并重力波(GW)信号的低延迟检测对于实现此类系统的多通间观察至关重要。合并GW信号具有不同的频率,并被非平稳噪声污染。早期对非拟议合并信号检测技术的研究使用了传统的基于傅立叶变换的时间频率分解方法来产生频谱图,这些方法遇到了难以识别背景噪声较重的合并信号的快速频率变化。为了解决此问题,我们介绍了联合率率频率频率变换(JCTFT),其中使用复杂值值窗口函数来调节输入信号的幅度,频率和相位。此外,我们概述了从JCTFT的结果中生成chirp速率增强时频谱图的技术。与经过Q-Transform频谱训练的同一网络相比,使用InceptionV3图像分类神经网络在模拟检测器信号中平均有14个改进的合并可检测性。 JCTFT是一种通用转换技术,可以应用于现有和第三代GW检测器信号。进一步的研究将旨在提高JCTFT的效率和性能。

Low-latency detection of Binary Black Hole (BBH) and Binary Neutron Star (BNS) merger Gravitational Wave (GW) signals is essential for enabling multi-messenger observations of such systems. The merger GW signals have varying frequencies and are contaminated by non-stationary noises. Earlier studies of non-templated merger signal detection techniques used traditional Fourier transform-based time-frequency decomposition methods for spectrogram generation, which have had difficulties identifying rapid frequency changes in merger signals with heavy background noise. To address this problem, we introduce the Joint-Chirp-rate-Time-Frequency Transform (JCTFT), in which complex-valued window functions are used to modulate the amplitude, frequency, and phase of the input signal. In addition, we outline the techniques for generating chirp-rate-enhanced time-frequency spectrograms from the results of a JCTFT. We demonstrate an average of 14 improved merger detectability among simulated detector signals with Signal-to-Noise Ratios between 6 and 10 using the InceptionV3 image classification neural network compared to the same network trained with Q-transform spectrograms. The JCTFT is a general transformation technique that can be applied to existing and third-generation GW detector signals. Further studies will aim to improve the efficiency and performance of the JCTFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源