论文标题

椭圆曲线的密度在数字字段上具有规定的扭转亚组的密度

Density of Elliptic Curves over Number Fields with Prescribed Torsion Subgroups

论文作者

Im, Bo-Hae, Kim, Hansol

论文摘要

令$ k $为一个数字字段。对于积极整数$ m $和$ n $,使$ m \ mid n $,我们让$ \ mathscr {s} _ {m,n} $是$ k $定义的椭圆曲线$ e/k $的集合,以便$ e(k)_ {\ e(k)_ {\ perperatorname {\ perperatorname {tors}}} \ sung} \ Mathbb {Z}/M \ Mathbb {Z} \ Times \ Mathbb {Z}/N \ Mathbb {Z} $。我们证明,如果模块化曲线的属$ x_ {1}(m,n)$是$ 0 $,那么``几乎是所有'$ e \ in \ mathscr {s} _ {m,n} $满足该$ E(k) $ \ mathscr {t} $。特别是,如果$ m = n = 1 $,则此结果将杜克定理超过$ \ mathbb {q} $ to nutivial Torsion子组的任意数字字段$ k $。

Let $K$ be a number field. For positive integers $m$ and $n$ such that $m\mid n$, we let $\mathscr{S}_{m,n}$ be the set of elliptic curves $E/K$ defined over $K$ such that $E(K)_{\operatorname{tors}}\supseteq \mathscr{T}\cong \mathbb{Z}/m\mathbb{Z}\times \mathbb{Z}/n\mathbb{Z}$. We prove that if the genus of the modular curve $X_{1}(m,n)$ is $0$, then `almost all' $E\in \mathscr{S}_{m,n}$ satisfy that $E(K)_{\operatorname{tors}}= \mathscr{T}$, i.e., not larger than $\mathscr{T}$. In particular, if $m=n=1$, this result generalizes Duke's theorem over $\mathbb{Q}$ to arbitrary number fields $K$ for the trivial torsion subgroup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源