论文标题
数据驱动的目标定位使用自适应雷达处理和卷积神经网络
Data-Driven Target Localization Using Adaptive Radar Processing and Convolutional Neural Networks
论文作者
论文摘要
利用现代射频(RF)建模和仿真工具的高级功能,专门设计用于自适应雷达处理应用程序,本文提出了一种数据驱动的方法,以提高自适应雷达检测后雷达目标定位的准确性。为此,我们使用RFView,高保真,特定于现场,RF建模和仿真工具将可变强度的目标随机放置在预定义的区域中,从而生成大量的雷达回报。我们从归一化自适应匹配的滤波器(NAMF)测试统计量的范围内,范围内的方位角[和多普勒]产生热图张量。然后,我们训练回归卷积神经网络(CNN),以估算这些热图张量的目标位置,并将该方法的目标定位精度与峰调格和局部搜索方法进行比较。这项实证研究表明,我们的回归CNN在目标位置估计准确性方面取得了可观的提高。即使在信噪比杂乱无章的噪声比(SCNR)方向上,回归CNN也具有显着的提高和合理的精度,该策略接近NAMF的分解阈值SCNR。我们还研究了训练有素的CNN对雷达数据中的不匹配的鲁棒性,在该数据中,CNN对从未经训练的区域收集的热图张量进行了测试。我们证明,使用相对较少的新培训样本,通过几次学习,可以通过几次学习使我们的CNN与雷达数据中的不匹配使不匹配。
Leveraging the advanced functionalities of modern radio frequency (RF) modeling and simulation tools, specifically designed for adaptive radar processing applications, this paper presents a data-driven approach to improve accuracy in radar target localization post adaptive radar detection. To this end, we generate a large number of radar returns by randomly placing targets of variable strengths in a predefined area, using RFView, a high-fidelity, site-specific, RF modeling & simulation tool. We produce heatmap tensors from the radar returns, in range, azimuth [and Doppler], of the normalized adaptive matched filter (NAMF) test statistic. We then train a regression convolutional neural network (CNN) to estimate target locations from these heatmap tensors, and we compare the target localization accuracy of this approach with that of peak-finding and local search methods. This empirical study shows that our regression CNN achieves a considerable improvement in target location estimation accuracy. The regression CNN offers significant gains and reasonable accuracy even at signal-to-clutter-plus-noise ratio (SCNR) regimes that are close to the breakdown threshold SCNR of the NAMF. We also study the robustness of our trained CNN to mismatches in the radar data, where the CNN is tested on heatmap tensors collected from areas that it was not trained on. We show that our CNN can be made robust to mismatches in the radar data through few-shot learning, using a relatively small number of new training samples.