论文标题

下一键推荐算法的系统评估

A Systematical Evaluation for Next-Basket Recommendation Algorithms

论文作者

Shao, Zhufeng, Wang, Shoujin, Zhang, Qian, Lu, Wenpeng, Li, Zhao, Peng, Xueping

论文摘要

下一个篮子推荐系统(NBRS)旨在根据用户的购买历史记录对用户对物品的偏好进行建模,通常是一系列历史篮子,通过对用户对物品的偏好进行建模。由于其在现实世界的电子商务行业中的广泛适用性,NBR研究引起了近年来越来越多的关注。已经广泛研究了NBR,并通过提出了多种NBR方法在该领域取得了很多进展。但是,一个重要的问题是,缺乏对各种NBR方法的系统和统一评估。不同的研究经常在不同的实验环境下评估不同数据集上的NBR方法,因此很难公平有效地比较不同NBR方法的性能。为了弥合这一差距,在这项工作中,我们在NBR地区进行了系统的经验研究。具体来说,我们审查了NBR中的代表性工作,并分析了他们的缺点和优点。然后,我们在相同的实验设置下运行所选的NBR算法,并使用相同的测量值评估其性能。这提供了一个统一的框架,以公平地比较不同的NBR方法。我们希望这项研究可以为这个充满活力的地区的未来研究提供宝贵的参考。

Next basket recommender systems (NBRs) aim to recommend a user's next (shopping) basket of items via modeling the user's preferences towards items based on the user's purchase history, usually a sequence of historical baskets. Due to its wide applicability in the real-world E-commerce industry, the studies NBR have attracted increasing attention in recent years. NBRs have been widely studied and much progress has been achieved in this area with a variety of NBR approaches having been proposed. However, an important issue is that there is a lack of a systematic and unified evaluation over the various NBR approaches. Different studies often evaluate NBR approaches on different datasets, under different experimental settings, making it hard to fairly and effectively compare the performance of different NBR approaches. To bridge this gap, in this work, we conduct a systematical empirical study in NBR area. Specifically, we review the representative work in NBR and analyze their cons and pros. Then, we run the selected NBR algorithms on the same datasets, under the same experimental setting and evaluate their performances using the same measurements. This provides a unified framework to fairly compare different NBR approaches. We hope this study can provide a valuable reference for the future research in this vibrant area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源