论文标题

四量张量列车等级最小化,在变换的域中稀疏正规化以完成QUATERNION TENSOR完成

Quaternion Tensor Train Rank Minimization with Sparse Regularization in a Transformed Domain for Quaternion Tensor Completion

论文作者

Miao, Jifei, Kou, Kit Ian, Yang, Liqiao, Cheng, Dong

论文摘要

张量列车排名(TT级)由于捕获高阶(> 3)张量的全球低级别的能力,在张量完成中取得了令人鼓舞的结果。另一方面,最近被证明是用于编码颜色像素的非常合适的框架,并且在各种彩色图像处理任务中获得了出色的性能。在本文中,介绍了四量张量列(QTT)分解,并且基于Quaternion tt-rank(QTT级)自然定义,这是其实际数字字段中其对应物的概括。此外,为了利用四元张量的局部稀疏先验,定义了一个通用且灵活的变换框架。结合了四元张量的全局低级别和局部稀疏先验,我们提出了一种新型的四元张量张量完成模型,即在转化的域中稀疏的正则化。具体而言,我们使用模式-N典型展开的四元素矩阵的四个加权核定标准(QWNN)来表征全局低QTT级别,以及在变换的域中Quaternion Tensor的L1-norm,以表征局部稀疏特性。此外,为了使QTT级最小化处理颜色图像并更好地处理彩色视频,我们将张量的增强方法KA推广到Quaternion张量张量并定义Quaternion KA(QKA),这是基于QTT范围的优化问题的有用预处理步骤。关于颜色图像和颜色视频的数值实验介绍了任务,表明了所提出的方法的优势比最先进的方法的优点。

The tensor train rank (TT-rank) has achieved promising results in tensor completion due to its ability to capture the global low-rankness of higher-order (>3) tensors. On the other hand, recently, quaternions have proven to be a very suitable framework for encoding color pixels, and have obtained outstanding performance in various color image processing tasks. In this paper, the quaternion tensor train (QTT) decomposition is presented, and based on that the quaternion TT-rank (QTT-rank) is naturally defined, which are the generalizations of their counterparts in the real number field. In addition, to utilize the local sparse prior of the quaternion tensor, a general and flexible transform framework is defined. Combining both the global low-rank and local sparse priors of the quaternion tensor, we propose a novel quaternion tensor completion model, i.e., QTT-rank minimization with sparse regularization in a transformed domain. Specifically, we use the quaternion weighted nuclear norm (QWNN) of mode-n canonical unfolding quaternion matrices to characterize the global low-QTT-rankness, and the l1-norm of the quaternion tensor in a transformed domain to characterize the local sparse property. Moreover, to enable the QTT-rank minimization to handle color images and better handle color videos, we generalize KA, a tensor augmentation method, to quaternion tensors and define quaternion KA (QKA), which is a helpful pretreatment step for QTT-rank based optimization problems. The numerical experiments on color images and color videos inpainting tasks indicate the advantages of the proposed method over the state-of-the-art ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源