论文标题

多尺度注意的多尺度实例学习用于分类多吉吉像的组织学图像

Multi-Scale Attention-based Multiple Instance Learning for Classification of Multi-Gigapixel Histology Images

论文作者

Wibawa, Made Satria, Lo, Kwok-Wai, Young, Lawrence, Rajpoot, Nasir

论文摘要

具有多吉吉​​像素的组织学图像产生了丰富的信息,以用于癌症诊断和预后。在大多数情况下,仅提供幻灯片级标签,因为像素的注释是劳动密集型任务。在本文中,我们提出了一条深度学习管道,以进行组织学图像中的分类。使用多个实例学习,我们试图预测基于苏木精和曙红(H&E)组织学图像的鼻咽癌(NPC)的潜在膜蛋白1(LMP1)状态。我们利用了与聚合层保持剩余连接的注意机制。在我们的3倍交叉验证实验中,我们分别达到了平均准确性,AUC和F1得分为0.936、0.995和0.862。这种方法还使我们能够通过可视化注意力评分来检查模型的解释性。据我们所知,这是使用深度学习预测NPC上LMP1状态的首次尝试。

Histology images with multi-gigapixel of resolution yield rich information for cancer diagnosis and prognosis. Most of the time, only slide-level label is available because pixel-wise annotation is labour intensive task. In this paper, we propose a deep learning pipeline for classification in histology images. Using multiple instance learning, we attempt to predict the latent membrane protein 1 (LMP1) status of nasopharyngeal carcinoma (NPC) based on haematoxylin and eosin-stain (H&E) histology images. We utilised attention mechanism with residual connection for our aggregation layers. In our 3-fold cross-validation experiment, we achieved average accuracy, AUC and F1-score 0.936, 0.995 and 0.862, respectively. This method also allows us to examine the model interpretability by visualising attention scores. To the best of our knowledge, this is the first attempt to predict LMP1 status on NPC using deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源