论文标题
在浓度 - 紧凑型类型原理的研究和应用中,对于$ \ mathbb {r}^{n} $中的关键术语的系统
On a study and applications of the Concentration-compactness type principle for Systems with critical terms in $\mathbb{R}^{N}$
论文作者
论文摘要
在本文中,在分数Sobolev空间具有可变指数的情况下,尤其是对于非线性系统,我们获得了狮子和Chabrowski浓度 - 紧凑型原理的一些重要变体。作为结果的应用,我们显示了涉及一类新的一般非局部非局部集成差异运算符的椭圆系统的非平凡溶液的存在和概念性行为,这些溶液具有指数变量,并且在$ \ mathbb {r}^{n} $中具有指数变量和关键的生长条件。
In this paper, we obtain some important variants of the Lions and Chabrowski Concentration-compactness principle, in the context of fractional Sobolev spaces with variable exponents, especially for nonlinear systems. As an application of the results, we show the existence and assymptotic behaviour of nontrivial solutions for elliptic systems involving a new class of general nonlocal integrodifferential operators with exponent variables and critical growth conditions in $\mathbb{R}^{N}$.