论文标题

$ g_2 $ - 结构的流量与calabi-yau歧管相关

Flows of $G_2$-Structures associated to Calabi-Yau Manifolds

论文作者

Picard, Sébastien, Suan, Caleb

论文摘要

我们建立了抛物线复杂的Monge-ampère方程与$ G_2 $ -LAPLACIAN流量之间的对应关系,用于从Kähler指标上产生的初始数据,该数据以复杂的$ 2 $ - 或$ 3 $ fold。通过应用对复杂的Monge-Ampère方程式的估计,我们表明,对于此类的初始数据,$ G_2 $ -LAPLACIAN流一直存在,并收集到由Kählerricci-flat衡量标准的无扭力$ G_2 $结构。对于$ G_2 $ -LAPLACIAN COFLOW,获得了类似的结果,在这种情况下,Coflow与Kähler-ricci流有关。

We establish a correspondence between a parabolic complex Monge-Ampère equation and the $G_2$-Laplacian flow for initial data produced from a Kähler metric on a complex $2$- or $3$-fold. By applying estimate for the complex Monge-Ampère equation, we show that for this class of initial data the $G_2$-Laplacian flow exists for all time and converges to a torsion-free $G_2$-structure induced by a Kähler Ricci-flat metric. Similar results are obtained for the $G_2$-Laplacian coflow, and in this case the coflow is related to the Kähler-Ricci flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源