论文标题

SE(3) - 扩散场:通过扩散学习平稳的成本功能,以进行关节掌握和运动优化

SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion

论文作者

Urain, Julen, Funk, Niklas, Peters, Jan, Chalvatzaki, Georgia

论文摘要

多目标优化问题在机器人技术中无处不在,例如,机器人操纵任务的优化需要联合考虑掌握姿势配置,碰撞和关节限制。尽管可以轻松地手工设计某些需求,例如轨迹的平滑度,但需要从数据中学到一些特定于任务的目标。这项工作介绍了一种学习数据驱动的SE(3)成本函数作为扩散模型的方法。扩散模型可以代表高表现的多模式分布,并且由于其得分匹配训练目标,因此在整个空间中表现出适当的梯度。学习成本作为扩散模型,可以将其与其他成本无缝集成到单个可区分的目标函数中,从而实现基于联合梯度的运动优化。在这项工作中,我们专注于学习6DOF抓握的SE(3)扩散模型,从而为关节掌握和运动优化的新框架提供了新的框架,而无需将轨迹生成的掌握选择。我们评估了SE(3)扩散模型W.R.T.的表示能力。经典生成模型,我们在针对代表性基线的一系列模拟和现实的机器人操纵任务中展示了我们提出的优化框架的出色性能。

Multi-objective optimization problems are ubiquitous in robotics, e.g., the optimization of a robot manipulation task requires a joint consideration of grasp pose configurations, collisions and joint limits. While some demands can be easily hand-designed, e.g., the smoothness of a trajectory, several task-specific objectives need to be learned from data. This work introduces a method for learning data-driven SE(3) cost functions as diffusion models. Diffusion models can represent highly-expressive multimodal distributions and exhibit proper gradients over the entire space due to their score-matching training objective. Learning costs as diffusion models allows their seamless integration with other costs into a single differentiable objective function, enabling joint gradient-based motion optimization. In this work, we focus on learning SE(3) diffusion models for 6DoF grasping, giving rise to a novel framework for joint grasp and motion optimization without needing to decouple grasp selection from trajectory generation. We evaluate the representation power of our SE(3) diffusion models w.r.t. classical generative models, and we showcase the superior performance of our proposed optimization framework in a series of simulated and real-world robotic manipulation tasks against representative baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源