论文标题

数据反馈循环:模型驱动的数据集偏差放大

Data Feedback Loops: Model-driven Amplification of Dataset Biases

论文作者

Taori, Rohan, Hashimoto, Tatsunori B.

论文摘要

从互联网上刮下来的数据集对于大规模机器学习的成功至关重要。然而,随着模型输出开始取代人类注释作为监督的来源,这一成功使未来互联网衍生的数据集的实用性处于潜在风险。 在这项工作中,我们首先将与一个模型相互作用记录为历史的系统正式化,并将未来作为培训数据刮擦。然后,我们通过跟踪对测试时间偏差统计量的变化(例如,模型预测的性别偏差)来分析其稳定性。我们发现,偏置扩增的程度与模型的输出的行为是否像训练分布中的样本一样,我们表征并将其定义为一致的校准。在三种条件预测方案中的实验 - 图像分类,视觉角色标记和语言生成 - 表明表现出样本样行为的模型更加校准,因此更稳定。基于这种见解,我们提出了一项干预措施,以帮助校准和稳定不稳定的反馈系统。 代码可从https://github.com/rtaori/da​​ta_feedback获得。

Datasets scraped from the internet have been critical to the successes of large-scale machine learning. Yet, this very success puts the utility of future internet-derived datasets at potential risk, as model outputs begin to replace human annotations as a source of supervision. In this work, we first formalize a system where interactions with one model are recorded as history and scraped as training data in the future. We then analyze its stability over time by tracking changes to a test-time bias statistic (e.g. gender bias of model predictions). We find that the degree of bias amplification is closely linked to whether the model's outputs behave like samples from the training distribution, a behavior which we characterize and define as consistent calibration. Experiments in three conditional prediction scenarios - image classification, visual role-labeling, and language generation - demonstrate that models that exhibit a sampling-like behavior are more calibrated and thus more stable. Based on this insight, we propose an intervention to help calibrate and stabilize unstable feedback systems. Code is available at https://github.com/rtaori/data_feedback.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源