论文标题

混乱VII:M33中的大规模直接丰度研究

CHAOS VII: A Large-Scale Direct Abundance Study in M33

论文作者

Rogers, Noah S. J., Skillman, Evan D., Pogge, Richard W., Berg, Danielle A., Croxall, Kevin V., Bartlett, Jordan, Arellano-Córdova, Karla Z., Moustakas, John

论文摘要

化学丰度的分散体对驱动星系化学富集的过程非常强烈。由于其接近性,螺旋星系M33一直是许多化学丰度调查的重点,用于研究大型空间尺度上丰度的化学富集和分散。螺旋形的化学丰度(混乱)项目已经观察到$ \ sim $ 100 H II区域的M33区域,具有大型双眼望远镜(LBT),可产生最大的电子温度均质样本(t $ _e $),并在该银河系中直接丰富。我们的LBT观察结果产生了$ -0.037 $ \ pm $ 0.007 dex/kpc的稳健氧丰度梯度,并指出相对较小的(0.043 $ \ pm $ 0.015 dex)与此梯度相比的氧丰度。 N/H和N/O中的分散量类似,相对于O相对于O的NE,S,Cl和AR的丰度与预期的太阳比一致,如$α$ - 过程或$α$ - 过程依赖性元素。综上所述,M33中的ISM化学良好,并从内而外富集,没有证据表明银河系中给定半径处有显着的丰度变化。将我们的结果与文献中众多研究的结果进行了比较,我们讨论了可能膨胀丰度分散测量的可能污染源。重要的是,如果从单个t $ _e $测量中得出了丰度,而t $ _e $ -t $ _e $关系的依赖是推断出未衡量的电离区域的温度,则可以导致系统性偏置,从而将测得的分散剂提高到0.11 dex。

The dispersion in chemical abundances provides a very strong constraint on the processes that drive the chemical enrichment of galaxies. Due to its proximity, the spiral galaxy M33 has been the focus of numerous chemical abundance surveys to study the chemical enrichment and dispersion in abundances over large spatial scales. The CHemical Abundances Of Spirals (CHAOS) project has observed $\sim$100 H II regions in M33 with the Large Binocular Telescope (LBT), producing the largest homogeneous sample of electron temperatures (T$_e$) and direct abundances in this galaxy. Our LBT observations produce a robust oxygen abundance gradient of $-$0.037 $\pm$ 0.007 dex/kpc and indicate a relatively small (0.043 $\pm$ 0.015 dex) intrinsic dispersion in oxygen abundance relative to this gradient. The dispersions in N/H and N/O are similarly small and the abundances of Ne, S, Cl, and Ar relative to O are consistent with the solar ratio as expected for $α$-process or $α$-process-dependent elements. Taken together, the ISM in M33 is chemically well-mixed and homogeneously enriched from inside-out with no evidence of significant abundance variations at a given radius in the galaxy. Our results are compared to those of the numerous studies in the literature, and we discuss possible contaminating sources that can inflate abundance dispersion measurements. Importantly, if abundances are derived from a single T$_e$ measurement and T$_e$-T$_e$ relationships are relied on for inferring the temperature in the unmeasured ionization zone, this can lead to systematic biases which increase the measured dispersion up to 0.11 dex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源