论文标题

研究嗜睡检测性能,同时使用脑电图驱动可扩展的机器学习模型

Studying Drowsiness Detection Performance while Driving through Scalable Machine Learning Models using Electroencephalography

论文作者

Rogel, José Manuel Hidalgo, Beltrán, Enrique Tomás Martínez, Pérez, Mario Quiles, Bernal, Sergio López, Pérez, Gregorio Martínez, Celdrán, Alberto Huertas

论文摘要

- 背景 /简介:驾驶员嗜睡是一个重大问题,也是交通事故的主要原因之一。认知神经科学和计算机科学的进步已使使用脑部计算机界面(BCIS)和机器学习(ML)检测驱动程序的嗜睡。但是,文献缺乏对嗜睡检测性能的全面评估,使用一组ML算法,因此有必要研究适合受试者组的可扩展ML模型的性能。 - 方法:为了解决这些局限性,这项工作提出了一个智能框架,该框架采用了BCIS和基于脑电图的功能来检测驾驶场景中的嗜睡。种子视频数据集用于评估单个受试者和群体的表现最佳模型。 - 结果:结果表明,随机森林(RF)的表现优于文献中使用的其他模型,例如支持向量机(SVM),单个模型的F1得分为78%。关于可扩展模型,RF达到了79%的F1得分,证明了这些方法的有效性。该出版物强调了探索各种ML算法和可扩展方法的相关性,适用于受试者组以改善嗜睡系统,并最终减少驾驶员疲劳引起的事故数量。 - 结论:从这项研究中学到的经验教训表明,文献中不仅SVM,而且其他未充分探索的模型与嗜睡检测有关。另外,即使评估了新受试者,可扩展方法也有效地检测嗜睡。因此,提出的框架提出了一种新的方法,用于使用BCIS和ML在驾驶场景中检测嗜睡。

- Background / Introduction: Driver drowsiness is a significant concern and one of the leading causes of traffic accidents. Advances in cognitive neuroscience and computer science have enabled the detection of drivers' drowsiness using Brain-Computer Interfaces (BCIs) and Machine Learning (ML). However, the literature lacks a comprehensive evaluation of drowsiness detection performance using a heterogeneous set of ML algorithms, and it is necessary to study the performance of scalable ML models suitable for groups of subjects. - Methods: To address these limitations, this work presents an intelligent framework employing BCIs and features based on electroencephalography for detecting drowsiness in driving scenarios. The SEED-VIG dataset is used to evaluate the best-performing models for individual subjects and groups. - Results: Results show that Random Forest (RF) outperformed other models used in the literature, such as Support Vector Machine (SVM), with a 78% f1-score for individual models. Regarding scalable models, RF reached a 79% f1-score, demonstrating the effectiveness of these approaches. This publication highlights the relevance of exploring a diverse set of ML algorithms and scalable approaches suitable for groups of subjects to improve drowsiness detection systems and ultimately reduce the number of accidents caused by driver fatigue. - Conclusions: The lessons learned from this study show that not only SVM but also other models not sufficiently explored in the literature are relevant for drowsiness detection. Additionally, scalable approaches are effective in detecting drowsiness, even when new subjects are evaluated. Thus, the proposed framework presents a novel approach for detecting drowsiness in driving scenarios using BCIs and ML.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源