论文标题

训练液态水的神经网络力场的量子机械数据集的大小和质量

Size and Quality of Quantum Mechanical Data Sets for Training Neural Network Force Fields for Liquid Water

论文作者

Gomes-Filho, Márcio S., Torres, Alberto, Rocha, Alexandre Reily, Pedroza, Luana S.

论文摘要

分子动力学模拟已在不同的科学领域使用,以研究广泛的物理系统。但是,计算的准确性是基于描述原子相互作用的模型。特别是,从头算分子动力学(AIMD)具有密度功能理论(DFT)的准确性,因此仅限于小型系统和相对较短的模拟时间。在这种情况下,神经网络力场(NNFF)具有重要作用,因为它提供了一种规避这些警告的方法。在这项工作中,我们研究了在DFT级别设计的NNFF,以描述液态水,重点是考虑训练数据集的大小和质量。我们表明,与动态数据相比(例如扩散系数)相比,结构属性较少依赖于训练数据集的大小,并且良好的采样(选择训练过程的数据参考)可以很好地导致一个小样本,以良好的精确度。

Molecular dynamics simulations have been used in different scientific fields to investigate a broad range of physical systems. However, the accuracy of calculation is based on the model considered to describe the atomic interactions. In particular, ab initio molecular dynamics (AIMD) has the accuracy of density functional theory (DFT), and thus is limited to small systems and relatively short simulation time. In this scenario, Neural Network Force Fields (NNFF) have an important role, since it provides a way to circumvent these caveats. In this work we investigate NNFF designed at the level of DFT to describe liquid water, focusing on the size and quality of the training data-set considered. We show that structural properties are less dependent on the size of the training data-set compared to dynamical ones (such as the diffusion coefficient), and a good sampling (selecting data reference for training process) can lead to a small sample with good precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源