论文标题

基于模型和加速的追求控制器,用于高性能自主赛车

Model- and Acceleration-based Pursuit Controller for High-Performance Autonomous Racing

论文作者

Becker, Jonathan, Imholz, Nadine, Schwarzenbach, Luca, Ghignone, Edoardo, Baumann, Nicolas, Magno, Michele

论文摘要

自主赛车是一项研究领域,赢得了广泛的知名度,因为它将自动驾驶算法推向了极限,并作为一般自主驾驶的催化剂。对于规模的自主赛车平台,计算约束和复杂性通常会限制模型预测控制(MPC)的使用。结果,几何控制器是最常部署的控制器。它们在产生实施和操作简单性的同时被证明是性能。然而,他们固有地缺乏模型动力学的结合,因此将赛车限制在可以忽略轮胎滑动的速度域。本文介绍了基于模型和加速度的追求(MAP)基于高性能模型的轨迹跟踪算法,该算法保留了几何方法的简单性,同时利用轮胎动力学。与最新的几何控制器相比,所提出的算法允许在前所未有的速度上准确跟踪轨迹。在横向跟踪误差方面,映射控制器经过实验验证,并胜过四倍的参考几何控制器,在测试速度最高为11m/s时产生了0.05.55m的跟踪误差。

Autonomous racing is a research field gaining large popularity, as it pushes autonomous driving algorithms to their limits and serves as a catalyst for general autonomous driving. For scaled autonomous racing platforms, the computational constraint and complexity often limit the use of Model Predictive Control (MPC). As a consequence, geometric controllers are the most frequently deployed controllers. They prove to be performant while yielding implementation and operational simplicity. Yet, they inherently lack the incorporation of model dynamics, thus limiting the race car to a velocity domain where tire slip can be neglected. This paper presents Model- and Acceleration-based Pursuit (MAP) a high-performance model-based trajectory tracking algorithm that preserves the simplicity of geometric approaches while leveraging tire dynamics. The proposed algorithm allows accurate tracking of a trajectory at unprecedented velocities compared to State-of-the-Art (SotA) geometric controllers. The MAP controller is experimentally validated and outperforms the reference geometric controller four-fold in terms of lateral tracking error, yielding a tracking error of 0.055m at tested speeds up to 11m/s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源