论文标题

广义概率理论中的多系统测量及其在信息处理中的作用

Multi-system measurements in generalized probabilistic theories and their role in information processing

论文作者

Eftaxias, Giorgos, Weilenmann, Mirjam, Colbeck, Roger

论文摘要

广义概率理论(GPTS)提供了一个框架,可以研究一系列可能的理论,包括经典理论,量子理论以及其他理论。通常,扩大GPT的状态空间会导致更少的测量结果,因为其他状态对效应集,测量的组成部分产生了更强的限制。这可能对信息处理有影响。例如,在Boxworld中,可以实现任何无信号分布的GPT,在铃铛基础上没有测量的类似物,因此不可能纠缠交换的类似物。缺乏对Boxworld多个系统测量的全面研究。在这里,我们详细考虑了此类测量,从而区分可以通过依次与单个系统进行交互(称为接线)以及更有趣的集合的测量值。我们计算出少量输入,输出和各方的案例的所有可能的Boxworld效果,以识别那些是接线的效果。 BoxWorld的较大状态空间导致较小的效应空间,因此BoxWorld的影响广泛适用于GPT。我们还通过研究状态歧视,非局部性蒸馏和非纠缠的非局限性类似物来展示非效力用于信息处理的一些可能用途。最后,我们将结果与对逻辑一致的经典过程以及情境情景的组成的研究联系起来。通过增强对Boxworld中测量值的理解,我们的结果在研究量子理论可以基于的可能基本原理的研究中可能是有用的。

Generalized probabilistic theories (GPTs) provide a framework in which a range of possible theories can be examined, including classical theory, quantum theory and those beyond. In general, enlarging the state space of a GPT leads to fewer possible measurements because the additional states give stronger constraints on the set of effects, the constituents of measurements. This can have implications for information processing. In boxworld, for example, a GPT in which any no-signalling distribution can be realised, there is no analogue of a measurement in the Bell basis and hence the analogue of entanglement swapping is impossible. A comprehensive study of measurements on multiple systems in boxworld has been lacking. Here we consider such measurements in detail, distinguishing those that can be performed by interacting with individual systems sequentially (termed wirings), and the more interesting set of those that cannot. We compute all the possible boxworld effects for cases with small numbers of inputs, outputs and parties, identifying those that are wirings. The large state space of boxworld leads to a small effect space and hence the effects of boxworld are widely applicable in GPTs. We also show some possible uses of non-wirings for information processing by studying state discrimination, nonlocality distillation and the boxworld analogue of nonlocality without entanglement. Finally, we connect our results to the study of logically consistent classical processes and to the composition of contextuality scenarios. By enhancing understanding of measurements in boxworld, our results could be useful in studies of possible underlying principles on which quantum theory can be based.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源