论文标题
多行为建议的因果干预
Causal Intervention for Fairness in Multi-behavior Recommendation
论文作者
论文摘要
推荐系统通常会从各种用户行为中学习用户兴趣,包括点击和点击后行为(例如,喜欢和喜欢)。但是,这些行为不可避免地表现出流行性偏见,导致一些不公平的问题:1)对于具有相似质量,更受欢迎的物品的物品会获得更多的曝光; 2)更糟糕的是,受欢迎程度较低的流行物品可能会获得更多的曝光率。现有的减轻流行性偏见的工作会盲目消除偏见,通常忽略项目质量的影响。我们认为,不同用户行为之间的关系(例如,转换率)实际上反映了项目质量。因此,为了处理不公平的问题,我们建议通过考虑多种用户行为来减轻流行性偏见。 在这项工作中,我们研究了多行为推荐中相互作用生成过程背后的因果关系。具体来说,我们发现:1)项目受欢迎程度是暴露项目和用户的点击互动之间的混杂因素,导致第一个不公平; 2)一些隐藏的混杂因素(例如,项目生产者的声誉)影响了项目的流行和质量,导致第二次不公平。为了减轻这些混杂问题,我们提出了一个因果框架来估计因果效应,该因果效应利用后门调整以阻止混杂因素引起的后门道路。在推论阶段,我们消除了受欢迎程度的负面影响,并利用质量的良好效果进行推荐。在两个现实世界数据集上的实验验证了我们提出的框架的有效性,这在不牺牲建议准确性的情况下增强了公平性。
Recommender systems usually learn user interests from various user behaviors, including clicks and post-click behaviors (e.g., like and favorite). However, these behaviors inevitably exhibit popularity bias, leading to some unfairness issues: 1) for items with similar quality, more popular ones get more exposure; and 2) even worse the popular items with lower popularity might receive more exposure. Existing work on mitigating popularity bias blindly eliminates the bias and usually ignores the effect of item quality. We argue that the relationships between different user behaviors (e.g., conversion rate) actually reflect the item quality. Therefore, to handle the unfairness issues, we propose to mitigate the popularity bias by considering multiple user behaviors. In this work, we examine causal relationships behind the interaction generation procedure in multi-behavior recommendation. Specifically, we find that: 1) item popularity is a confounder between the exposed items and users' post-click interactions, leading to the first unfairness; and 2) some hidden confounders (e.g., the reputation of item producers) affect both item popularity and quality, resulting in the second unfairness. To alleviate these confounding issues, we propose a causal framework to estimate the causal effect, which leverages backdoor adjustment to block the backdoor paths caused by the confounders. In the inference stage, we remove the negative effect of popularity and utilize the good effect of quality for recommendation. Experiments on two real-world datasets validate the effectiveness of our proposed framework, which enhances fairness without sacrificing recommendation accuracy.