论文标题

在有限的地平线上对动态多机构系统的社会塑造

Social Shaping of Dynamic Multi-Agent Systems over a Finite Horizon

论文作者

Salehi, Zeinab, Chen, Yijun, Petersen, Ian R., Ratnam, Elizabeth L., Shi, Guodong

论文摘要

本文研究了自我维持的动态多基因系统(MAS),以在有限的地平线上以竞争性平衡运行的分散资源分配。资源消费的效用以及资源交换的收入,构成了每个代理商的回报,旨在最大化。每个效用函数都通过单个偏好进行参数化,这些偏好可以由代理人独立设计。通过塑造这些偏好并提出一组公用事业功能,我们可以保证,竞争平衡的最佳资源价格始终在社会上仍然可以接受,即,它永远不会违反指示负担能力的给定阈值。首先,我们表明在某些凸度假设下的概念层面可以解决这个问题。然后,作为一种基准案例,我们将二次MAS考虑并提出相关的社会塑造问题作为多代理LQR问题,使我们能够使用二次编程和动态编程提出明确的实用程序集。最后,提出了一种数值算法,用于计算保证社会接受价格的偏好函数参数的范围。给出了一些说明性示例以检查所提出方法的有效性。

This paper studies self-sustained dynamic multiagent systems (MAS) for decentralized resource allocation operating at a competitive equilibrium over a finite horizon. The utility of resource consumption, along with the income from resource exchange, forms each agent's payoff which is aimed to be maximized. Each utility function is parameterized by individual preferences which can be designed by agents independently. By shaping these preferences and proposing a set of utility functions, we can guarantee that the optimal resource price at the competitive equilibrium always remains socially acceptable, i.e., it never violates a given threshold that indicates affordability. First, we show this problem is solvable at the conceptual level under some convexity assumptions. Then, as a benchmark case, we consider quadratic MAS and formulate the associated social shaping problem as a multi-agent LQR problem which enables us to propose explicit utility sets using quadratic programming and dynamic programming. Finally, a numerical algorithm is presented for calculating the range of the preference function parameters which guarantee a socially accepted price. Some illustrative examples are given to examine the effectiveness of the proposed methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源