论文标题
Coredeep:使用宽度随机性改善裂纹检测算法
CoreDeep: Improving Crack Detection Algorithms Using Width Stochasticity
论文作者
论文摘要
自动检测图像中的裂纹或分割裂纹可以帮助降低维护或操作的成本。在具有挑战性的背景场景中检测,测量和量化裂纹以进行遇险分析是一项艰巨的任务,因为没有明确的边界可以将裂纹与背景区分开。开发的算法应应对与数据相关的固有挑战。一些知名度引人注目的挑战是颜色,强度,深度,模糊,动作,方向,方向,不同感兴趣的区域(ROI)(ROI),用于缺陷,比例,照明,复杂和挑战性背景等。这些变化发生在图像中(裂纹间)和图像中发生(裂纹内部变化)。总体而言,存在明显的背景(间)和前景(类内)变异性。在这项工作中,我们试图减少在具有挑战性的背景方案中这些变化的影响。我们提出了一种随机宽度(SW)方法来减少这些变化的效果。我们提出的方法可提高可检测性,并大大减少误报和负面因素。我们已经通过平均值,假阳性和负面的以及主观的感知质量来客观地衡量算法的性能。
Automatically detecting or segmenting cracks in images can help in reducing the cost of maintenance or operations. Detecting, measuring and quantifying cracks for distress analysis in challenging background scenarios is a difficult task as there is no clear boundary that separates cracks from the background. Developed algorithms should handle the inherent challenges associated with data. Some of the perceptually noted challenges are color, intensity, depth, blur, motion-blur, orientation, different region of interest (ROI) for the defect, scale, illumination, complex and challenging background, etc. These variations occur across (crack inter class) and within images (crack intra-class variabilities). Overall, there is significant background (inter) and foreground (intra-class) variability. In this work, we have attempted to reduce the effect of these variations in challenging background scenarios. We have proposed a stochastic width (SW) approach to reduce the effect of these variations. Our proposed approach improves detectability and significantly reduces false positives and negatives. We have measured the performance of our algorithm objectively in terms of mean IoU, false positives and negatives and subjectively in terms of perceptual quality.