论文标题

基于协方差的分数SPDE的合理近似值用于计算高效的贝叶斯推断

Covariance-based rational approximations of fractional SPDEs for computationally efficient Bayesian inference

论文作者

Bolin, David, Simas, Alexandre B., Xiong, Zhen

论文摘要

随机部分微分方程(SPDE)方法广泛用于建模大空间数据集。它基于代表$ \ mathbb {r}^d $上的高斯随机字段$ u $作为椭圆形Spde $ l^βU= \ nathcal {w} $的解决方案,其中$ l $是二阶差分运算符,是$2β$,$2β$(属于1 $ smooth $ $ $ $ $ $ $ $)高斯白噪声。文献中已经提出了一些方法来扩展方法,以允许任何满足$β> d/4 $的平滑度参数。即使这些方法可以很好地以一般的平滑度模拟SPDE,但它们不太适合贝叶斯推断,因为它们没有像原始SPDE方法一样提供近似值,即高斯马尔可夫随机场(GMRF)。我们通过提出一种基于近似于高斯字段的协方差$ l^{ - 2β} $的新方法来解决此问题,该方法通过有限元方法结合了分数功率的合理近似值。这会导致数值稳定的GMRF近似值,可以与快速贝叶斯推理的集成嵌套拉普拉斯近似(INLA)方法结合使用。对该方法进行了严格的合并分析,并通过模拟数据研究了该方法的准确性。最后,我们通过将RSPDE软件包与R-Inlla软件相结合以进行完整的贝叶斯推理来分析RSSPDE中RSPDE中的方法和相应的实现。

The stochastic partial differential equation (SPDE) approach is widely used for modeling large spatial datasets. It is based on representing a Gaussian random field $u$ on $\mathbb{R}^d$ as the solution of an elliptic SPDE $L^βu = \mathcal{W}$ where $L$ is a second-order differential operator, $2β$ (belongs to natural number starting from 1) is a positive parameter that controls the smoothness of $u$ and $\mathcal{W}$ is Gaussian white noise. A few approaches have been suggested in the literature to extend the approach to allow for any smoothness parameter satisfying $β>d/4$. Even though those approaches work well for simulating SPDEs with general smoothness, they are less suitable for Bayesian inference since they do not provide approximations which are Gaussian Markov random fields (GMRFs) as in the original SPDE approach. We address this issue by proposing a new method based on approximating the covariance operator $L^{-2β}$ of the Gaussian field $u$ by a finite element method combined with a rational approximation of the fractional power. This results in a numerically stable GMRF approximation which can be combined with the integrated nested Laplace approximation (INLA) method for fast Bayesian inference. A rigorous convergence analysis of the method is performed and the accuracy of the method is investigated with simulated data. Finally, we illustrate the approach and corresponding implementation in the R package rSPDE via an application to precipitation data which is analyzed by combining the rSPDE package with the R-INLA software for full Bayesian inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源