论文标题

3.3 Gbps Spad的量子随机数生成器

A 3.3 Gbps SPAD-Based Quantum Random Number Generator

论文作者

Keshavarzian, Pouyan, Ramu, Karthick, Tang, Duy, Weill, Carlos, Gramuglia, Francesco, Tan, Shyue Seng, Tng, Michelle, Lim, Louis, Quek, Elgin, Mandich, Denis, Stipčević, Mario, Charbon, Edoardo

论文摘要

量子随机数发生器是一种新兴技术,用于各种应用,包括现代安全和加密系统。典型方法利用熵源与提取或位生成电路相结合,以产生随机字符串。在集成的设计中,通常几乎没有建模或分析描述,对熵源,电路提取和提供的后处理。在这项工作中,我们首先讨论了有关量子随机触发器(QRFF)的理论,该理论阐明了电路瑕疵的作用,这些障碍在偏见和相关性中表现出来。然后,开发了Verilog-AMS模型,以验证模拟中的分析模型。提出了QRFF电路的新型晶体管实现,该实现可以补偿随机触发器的有限非对称跃迁固有的熵降解。最后,在55 nm双极-CMOS-DMOS(BCD)技术节点中制造并测试了一个包含两个独立阵列的完整系统,并测试了与开发模型相称的位生成统计量。使用外部LED操作时,完整的芯片能够生成3.3 Gbps的数据,而单个QRFF可以在每个随机数据中生成25 Mbps,同时保持Shannon Entropy界限> 0.997,这是迄今为止每个像素位生成率最高的速度之一。 NIST STS用于基准生成的位字符串,从而验证QRFF电路是完全集成QRNG的绝佳候选者。

Quantum random number generators are a burgeoning technology used for a variety of applications, including modern security and encryption systems. Typical methods exploit an entropy source combined with an extraction or bit generation circuit in order to produce a random string. In integrated designs there is often little modelling or analytical description of the entropy source, circuit extraction and post-processing provided. In this work, we first discuss theory on the quantum random flip-flop (QRFF), which elucidates the role of circuit imperfections that manifest themselves in bias and correlation. Then, a Verilog-AMS model is developed in order to validate the analytical model in simulation. A novel transistor implementation of the QRFF circuit is presented, which enables compensation of the degradation in entropy inherent to the finite non-symmetric transitions of the random flip-flop. Finally, a full system containing two independent arrays of the QRFF circuit is manufactured and tested in a 55 nm Bipolar-CMOS-DMOS (BCD) technology node, demonstrating bit generation statistics that are commensurate to the developed model. The full chip is able to generate 3.3 Gbps of data when operated with an external LED, whereas an individual QRFF can generate 25 Mbps each of random data while maintaining a Shannon entropy bound > 0.997, which is one of the highest per pixel bit generation rates to date. NIST STS is used to benchmark the generated bit strings, thereby validating the QRFF circuit as an excellent candidate for fully-integrated QRNGs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源