论文标题
迈向对上限假体的自适应阻抗控制的框架
Toward a Framework for Adaptive Impedance Control of an Upper-limb Prosthesis
论文作者
论文摘要
适应上限阻抗(即刚度,阻尼,惯性)对于人类与动态环境进行互动以执行抓握或操纵任务至关重要。另一方面,专为最先进的上限上LIMB假体设计的控制方法从关节运动学方面推断出从表面肌电图(SEMG)信号中推断出电动机,但它们无法推断和使用肢体的潜在阻抗。我们提出了一个框架,该框架使人用户可以通过手腕的屈伸力同时控制模拟机器人的运动学,刚度和阻尼。该框架包括肌肉螺旋单元和向前动态块,以估算SEMG信号的电动机意图,以及可变阻抗控制器,该控制器实现了对机器人的估计意图,从而使用户可以在线调整机器人的运动学和动力学。我们在在自由空间中执行的任务时,通过8个健全的受试者和一个截肢者评估我们的框架,并且在存在意外的外部扰动的情况下,需要适应手腕阻抗以确保与环境的稳定交互。我们在实验上证明,我们的方法在适应外部扰动,整体可控性和参与者的反馈方面的能力方面优于数据驱动的基线。
Adapting upper-limb impedance (i.e., stiffness, damping, inertia) is essential for humans interacting with dynamic environments for executing grasping or manipulation tasks. On the other hand, control methods designed for state-of-the-art upper-limb prostheses infer motor intent from surface electromyography (sEMG) signals in terms of joint kinematics, but they fail to infer and use the underlying impedance properties of the limb. We present a framework that allows a human user to simultaneously control the kinematics, stiffness, and damping of a simulated robot through wrist's flexion-extension. The framework includes muscle-tendon units and a forward dynamics block to estimate the motor intent from sEMG signals, and a variable impedance controller that implements the estimated intent on the robot, allowing the user to adapt the robot's kinematics and dynamics online. We evaluate our framework with 8 able-bodied subjects and an amputee during reaching tasks performed in free space, and in the presence of unexpected external perturbations that require adaptation of the wrist impedance to ensure stable interaction with the environment. We experimentally demonstrate that our approach outperforms a data-driven baseline in terms of its ability to adapt to external perturbations, overall controllability, and feedback from participants.