论文标题
Riemann表面家族的较高属属属
Higher genus polylogarithms on families of Riemann surfaces
论文作者
论文摘要
我们在任何描述与简单的杆子的单态连接单层的尖头riemann表面的家族上构建了聚集体。此外,我们表明,在变形参数及其与家族相关的对数中,可计算的多聚集体是功率序列。
We construct polylogarithms on families of pointed Riemann surfaces of any genus which describe monodromies of meromorphic connections with simple poles. Furthermore, we show that the polylogaritms are computable as power series in deformation parameters and their logarithms associated with the families.