论文标题
单数估值和Hadwiger定理在凸功能上
Singular valuations and the Hadwiger theorem on convex functions
论文作者
论文摘要
我们给出了平滑,旋转和双重旋转不变估值的表征,并使用此结果来获得Hadwiger定理在凸函数上的新证明。我们还使用集成在差分周期中的集成来描述功能固有体积的构建,并将这些功能作为主值积分的新表示,相对于Hessian措施。
We give a characterization of smooth, rotation and dually epi-translation invariant valuations and use this result to obtain a new proof of the Hadwiger theorem on convex functions. We also give a description of the construction of the functional intrinsic volumes using integration over the differential cycle and provide a new representation of these functionals as principal value integrals with respect to the Hessian measures.