论文标题
过渡到HyperChaos:动态系统中吸引子和间歇性大振幅事件的突然扩展
Transition to hyperchaos: Sudden expansion of attractor and intermittent large-amplitude events in dynamical systems
论文作者
论文摘要
高cha与至少两个正lyapunov指数的存在,而不仅仅是在动态系统中的一个。这里介绍了一种一般的情况,显示了超基因的出现,当时间动力学显示间歇性的大振幅尖峰或爆发事件时,连续动力系统的吸引子突然扩展在临界参数下突然大扩展。时间动力学的局部最大值的分布是非高斯的,尾巴很少发生大振幅事件。我们体现了三种范式模型中超cha的突然出现的结果,即耦合的后玛斯 - 罗斯模型,三个耦合的螺旋振荡器和一个高chaotic模型。
Hyperchaos is distinguished from chaos by the presence of at least two positive Lyapunov exponents instead of just one in dynamical systems. A general scenario is presented here that shows emergence of hyperchaos with a sudden large expansion of the attractor of continuous dynamical systems at a critical parameter when the temporal dynamics shows intermittent large-amplitude spiking or bursting events. The distribution of local maxima of the temporal dynamics is non-Gaussian with a tail, confirming a rare occurrence of the large-amplitude events. We exemplify our results on the sudden emergence of hyperchaos in three paradigmatic models, namely, a coupled Hindmarsh-Rose model, three coupled Duffing oscillators, and a hyperchaotic model.