论文标题
约旦的课程和卢斯蒂格分层是断开的还原组
Jordan classes and Lusztig strata in disconnected reductive groups
论文作者
论文摘要
让$ g $成为一个非连接的还原代数组,而在代数封闭的字段$ \ mathbb {k} $上,让$ d $是$ g $的连接组件。我们调查了$ D $的Jordan类,并在$ g^{\ Circ} $ orbits的诱导方面获取了约旦班级的常规部分的描述。我们使用此结果表明,在非连接还原代数组中的Lusztig地层局部封闭。
Let $G$ be a non-connected reductive algebraic group over an algebraically closed field $\mathbb{K}$ and let $D$ be a connected component of $G$. We investigate Jordan classes of $D$ and we obtain a description of the regular part of the closure of a Jordan class in terms of induction of $G^{\circ}$-orbits. We use this result to show that Lusztig strata in a non-connected reductive algebraic group are locally closed.