论文标题

Genloco:四足机器人的广义运动控制器

GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots

论文作者

Feng, Gilbert, Zhang, Hongbo, Li, Zhongyu, Peng, Xue Bin, Basireddy, Bhuvan, Yue, Linzhu, Song, Zhitao, Yang, Lizhi, Liu, Yunhui, Sreenath, Koushil, Levine, Sergey

论文摘要

近年来,商业上可用和负担得起的四足动物机器人激增,其中许多平台都在研究和行业中积极使用。随着腿部机器人的可用性的增加,对这些机器人能够执行有用技能的控制器的需求也是如此。但是,大多数用于控制器开发的基于学习的框架都集中在培训机器人特定的控制器上,该过程需要为每个新机器人重复。在这项工作中,我们引入了一个用于训练四足机器人的广义运动(Genloco)控制器的框架。我们的框架合成了可以部署在具有相似形态的各种四足动物机器人上的通用运动控制器。我们提出了一种简单但有效的形态随机化方法,该方法在程序上生成了一组模拟机器人进行训练。我们表明,通过对这套模拟机器人进行训练控制器,我们的模型获得了更多的一般控制策略,这些策略可以直接转移到具有多种形态的新型模拟和真实世界机器人中,这在训练过程中未被观察到。

Recent years have seen a surge in commercially-available and affordable quadrupedal robots, with many of these platforms being actively used in research and industry. As the availability of legged robots grows, so does the need for controllers that enable these robots to perform useful skills. However, most learning-based frameworks for controller development focus on training robot-specific controllers, a process that needs to be repeated for every new robot. In this work, we introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots. Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots with similar morphologies. We present a simple but effective morphology randomization method that procedurally generates a diverse set of simulated robots for training. We show that by training a controller on this large set of simulated robots, our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots with diverse morphologies, which were not observed during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源