论文标题

深入研究Bird's-eye-View感知的魔鬼:评论,评估和食谱

Delving into the Devils of Bird's-eye-view Perception: A Review, Evaluation and Recipe

论文作者

Li, Hongyang, Sima, Chonghao, Dai, Jifeng, Wang, Wenhai, Lu, Lewei, Wang, Huijie, Zeng, Jia, Li, Zhiqi, Yang, Jiazhi, Deng, Hanming, Tian, Hao, Xie, Enze, Xie, Jiangwei, Chen, Li, Li, Tianyu, Li, Yang, Gao, Yulu, Jia, Xiaosong, Liu, Si, Shi, Jianping, Lin, Dahua, Qiao, Yu

论文摘要

在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中周围场景是直观和融合友好的。在BEV中表示对象对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以结合不同来源和视图的特征; (d)如何适应和推广算法作为传感器配置在不同情况下有所不同。在这项调查中,我们回顾了有关BEV感知的最新作品,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光镜头和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新工作,并在https://github.com/opendrivelab/birds-eye-eye-view-pocep.

Learning powerful representations in bird's-eye-view (BEV) for perception tasks is trending and drawing extensive attention both from industry and academia. Conventional approaches for most autonomous driving algorithms perform detection, segmentation, tracking, etc., in a front or perspective view. As sensor configurations get more complex, integrating multi-source information from different sensors and representing features in a unified view come of vital importance. BEV perception inherits several advantages, as representing surrounding scenes in BEV is intuitive and fusion-friendly; and representing objects in BEV is most desirable for subsequent modules as in planning and/or control. The core problems for BEV perception lie in (a) how to reconstruct the lost 3D information via view transformation from perspective view to BEV; (b) how to acquire ground truth annotations in BEV grid; (c) how to formulate the pipeline to incorporate features from different sources and views; and (d) how to adapt and generalize algorithms as sensor configurations vary across different scenarios. In this survey, we review the most recent works on BEV perception and provide an in-depth analysis of different solutions. Moreover, several systematic designs of BEV approach from the industry are depicted as well. Furthermore, we introduce a full suite of practical guidebook to improve the performance of BEV perception tasks, including camera, LiDAR and fusion inputs. At last, we point out the future research directions in this area. We hope this report will shed some light on the community and encourage more research effort on BEV perception. We keep an active repository to collect the most recent work and provide a toolbox for bag of tricks at https://github.com/OpenDriveLab/Birds-eye-view-Perception

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源