论文标题

2D徒手超声大脑图像的自适应3D定位

Adaptive 3D Localization of 2D Freehand Ultrasound Brain Images

论文作者

Yeung, Pak-Hei, Aliasi, Moska, Haak, Monique, Consortium, The INTERGROWTH-21st, Xie, Weidi, Namburete, Ana I. L.

论文摘要

二维(2D)徒手超声是产前护理和胎儿生长监测的中流。给定2D超声脑扫描中,在3D解剖中匹配相应的横截面平面的任务对于徒手扫描至关重要,但具有挑战性。我们提出了Adlocui,这是一个框架,该框架可自适应地将2D超声图像定位在3D解剖图集中,而无需使用任何外部跟踪传感器。我们首先训练一个卷积神经网络,其中2D切片从共同的3D超声量从共同的2D切片中采样,以预测3D解剖学的位置。接下来,我们使用新型的无监督循环一致性将其用2D徒手超声图像对其进行微调,这事实是,在3D解剖图集中,图像序列的整体位移等于从第一个图像到该序列的最后一个图像的位移。我们证明,Adlocui可以适应带有不同机器和协议的三个不同的超声数据集,并且比基线的机器和协议获得了明显更好的本地化精度。 Adlocui可用于床边的无传感器2D徒手超声指导。源代码可从https://github.com/pakheiyeung/adlocui获得。

Two-dimensional (2D) freehand ultrasound is the mainstay in prenatal care and fetal growth monitoring. The task of matching corresponding cross-sectional planes in the 3D anatomy for a given 2D ultrasound brain scan is essential in freehand scanning, but challenging. We propose AdLocUI, a framework that Adaptively Localizes 2D Ultrasound Images in the 3D anatomical atlas without using any external tracking sensor.. We first train a convolutional neural network with 2D slices sampled from co-aligned 3D ultrasound volumes to predict their locations in the 3D anatomical atlas. Next, we fine-tune it with 2D freehand ultrasound images using a novel unsupervised cycle consistency, which utilizes the fact that the overall displacement of a sequence of images in the 3D anatomical atlas is equal to the displacement from the first image to the last in that sequence. We demonstrate that AdLocUI can adapt to three different ultrasound datasets, acquired with different machines and protocols, and achieves significantly better localization accuracy than the baselines. AdLocUI can be used for sensorless 2D freehand ultrasound guidance by the bedside. The source code is available at https://github.com/pakheiyeung/AdLocUI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源