论文标题

习俗:多功能多摩斯集成的多功能深度学习策略

CustOmics: A versatile deep-learning based strategy for multi-omics integration

论文作者

Benkirane, Hakim, Pradat, Yoann, Michiels, Stefan, Cournède, Paul-Henry

论文摘要

高通量测序技术的最新进展使得可以提取多个特征,这些特征描绘了以多种和互补分子水平的患者样本。这些数据的产生导致了计算生物学的新挑战,这些挑战涉及捕获多个基因及其功能之间相互关系的高维和异质数据集的整合。由于它们的多功能性和学习复杂数据的合成潜在表示的能力,深度学习方法为整合多词数据提供了有希望的观点。这些方法导致了许多主要基于自动编码器模型的许多原始体系结构的概念。但是,由于任务的困难,集成策略是基本的,即在不失去全球趋势的情况下充分利用来源的特殊性。本文提出了一种新型策略,以构建可自定义的自动编码器模型,该模型适应了高维多源集成中使用的数据集。我们将评估整合策略对潜在代表的影响,并结合提出一种新方法的最佳策略(https://github.com/hakimbenkirane/customics)。我们在此关注来自多个OMIC来源的数据的集成,并证明了针对多个任务(例如分类和生存分析)的测试用例的拟议方法的性能。

Recent advances in high-throughput sequencing technologies have enabled the extraction of multiple features that depict patient samples at diverse and complementary molecular levels. The generation of such data has led to new challenges in computational biology regarding the integration of high-dimensional and heterogeneous datasets that capture the interrelationships between multiple genes and their functions. Thanks to their versatility and ability to learn synthetic latent representations of complex data, deep learning methods offer promising perspectives for integrating multi-omics data. These methods have led to the conception of many original architectures that are primarily based on autoencoder models. However, due to the difficulty of the task, the integration strategy is fundamental to take full advantage of the sources' particularities without losing the global trends. This paper presents a novel strategy to build a customizable autoencoder model that adapts to the dataset used in the case of high-dimensional multi-source integration. We will assess the impact of integration strategies on the latent representation and combine the best strategies to propose a new method, CustOmics (https://github.com/HakimBenkirane/CustOmics). We focus here on the integration of data from multiple omics sources and demonstrate the performance of the proposed method on test cases for several tasks such as classification and survival analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源