论文标题

Bayesldm:一种用于纵向数据概率建模的特定领域语言

BayesLDM: A Domain-Specific Language for Probabilistic Modeling of Longitudinal Data

论文作者

Tung, Karine, De La Torre, Steven, Mistiri, Mohamed El, De Braganca, Rebecca Braga, Hekler, Eric, Pavel, Misha, Rivera, Daniel, Klasnja, Pedja, Spruijt-Metz, Donna, Marlin, Benjamin M.

论文摘要

在本文中,我们介绍了Bayesldm,这是一个用于贝叶斯纵向数据建模的系统,该系统由高级建模语言组成,其特定功能用于建模复杂的多变量时间序列数据,并与编译器结合使用,该编译器可以生成优化的概率程序代码,以在指定模型中执行推理。 Bayesldm支持贝叶斯网络模型的建模,其特定关注动态贝叶斯网络(DBN)的高效,声明性规范。 Bayesldm编译器将模型规范与检查可用数据的检查和输出代码相结合,用于对未知模型参数进行贝叶斯推断,同时处理丢失的数据。这些功能有可能在域中显着加速迭代建模工作流,这些迭代建模工作流程涉及对复杂纵向数据进行分析的分析,通过抽象产生计算有效的概率推理代码的过程。我们描述了Bayesldm系统组件,评估表示和推理优化的效率,并提供了该系统在分析异质和部分观察到的移动健康数据的应用的说明示例。

In this paper we present BayesLDM, a system for Bayesian longitudinal data modeling consisting of a high-level modeling language with specific features for modeling complex multivariate time series data coupled with a compiler that can produce optimized probabilistic program code for performing inference in the specified model. BayesLDM supports modeling of Bayesian network models with a specific focus on the efficient, declarative specification of dynamic Bayesian Networks (DBNs). The BayesLDM compiler combines a model specification with inspection of available data and outputs code for performing Bayesian inference for unknown model parameters while simultaneously handling missing data. These capabilities have the potential to significantly accelerate iterative modeling workflows in domains that involve the analysis of complex longitudinal data by abstracting away the process of producing computationally efficient probabilistic inference code. We describe the BayesLDM system components, evaluate the efficiency of representation and inference optimizations and provide an illustrative example of the application of the system to analyzing heterogeneous and partially observed mobile health data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源