论文标题
量子热电流上的通用缩放边界
Universal Scaling Bounds on a Quantum Heat Current
论文作者
论文摘要
我们在流入量子$ l $粒子系统以及马尔可夫环境的量子电流上得出了新的界限。通过假设哈密顿系统和系统 - 环境相互作用哈密顿量在$ l $中广泛,我们表明热流量表的绝对价值最多为$θ(l^3)$,限制为大$ l $。另外,我们提出了一个示例,该示例在缩放范围内饱和:全球与热浴的非相互作用粒子。但是,这种系统的构建需要环境引起的多体相互作用,这可能很难实现当前技术。为了考虑更可行的情况,我们专注于一类系统,如果噪声运算符的任何非对角元素(源自系统 - 环境相互作用hamiltonian)在系统能量基础上零,如果能量差超过一定值$ΔE$。然后,对于$ΔE=θ(l^0)$,我们在热流的绝对值上得出了另一个缩放限制的$θ(l^2)$,所谓的超级良好属于一个类,以使该界限饱和。我们的结果对于评估量子增强热力学设备的最佳性能很有用,该功能包含量子热发动机,量子冰箱和量子电池等深远的应用。
We derive new bounds on a heat current flowing into a quantum $L$-particle system coupled with a Markovian environment. By assuming that a system Hamiltonian and a system-environment interaction Hamiltonian are extensive in $L$, we show that the absolute value of the heat current scales at most as $Θ(L^3)$ in a limit of large $L$. Also, we present an example that saturates this bound in terms of scaling: non-interacting particles globally coupled with a thermal bath. However, the construction of such system requires many-body interactions induced by the environment, which may be difficult to realize with the current technology. To consider more feasible cases, we focus on a class of system where any non-diagonal elements of the noise operator (derived from the system-environment interaction Hamiltonian) become zero in the system energy basis, if the energy difference is beyond a certain value $ΔE$. Then, for $ΔE = Θ(L^0)$, we derive another scaling bound $Θ(L^2)$ on the absolute value of the heat current, and the so-called superradiance belongs to a class to saturate this bound. Our results are useful to evaluate the best achievable performance of quantum-enhanced thermodynamic devices, which contain far-reaching applications for such as quantum heat engines, quantum refrigerators and quantum batteries.