论文标题

复杂大脑网络的统计模型:最大熵方法

Statistical models of complex brain networks: a maximum entropy approach

论文作者

Dichio, Vito, Fallani, Fabrizio De Vico

论文摘要

大脑是一个高度复杂的系统。这种复杂性的大多数源于其各个部分之间的连接,这些连接引起了丰富的动态和高级认知功能的出现。解开基础网络结构对于了解在健康和病理状况下的大脑功能至关重要。然而,分析大脑网络是具有挑战性的,部分原因是它们的结构仅代表了一种可能的生成随机过程的一种可能的实现,而生成的随机过程通常是未知的。因此,具有应对这种内在变异性的正式方法对于表征大脑网络性能的核心是至关重要的。解决此问题需要开发适当的工具,主要是根据网络科学和统计数据进行的。在这里,我们专注于网络的特定最大熵模型,即指数随机图模型(ERGMS),作为一种简约的方法,可以识别观察到的全局网络结构背后的局部连接机制。审查了人们寻求人脑网络的基本组织特性,以及对中风等神经疾病的预测生物标志物的识别。最后,我们讨论了如何与即将改进实验数据获取的改进相关的统计图建模中的新兴结果和工具,这可能会导致对网络神经科学中复杂系统的概率描述。

The brain is a highly complex system. Most of such complexity stems from the intermingled connections between its parts, which give rise to rich dynamics and to the emergence of high-level cognitive functions. Disentangling the underlying network structure is crucial to understand the brain functioning under both healthy and pathological conditions. Yet, analyzing brain networks is challenging, in part because their structure represents only one possible realization of a generative stochastic process which is in general unknown. Having a formal way to cope with such intrinsic variability is therefore central for the characterization of brain network properties. Addressing this issue entails the development of appropriate tools mostly adapted from network science and statistics. Here, we focus on a particular class of maximum entropy models for networks, i.e. exponential random graph models (ERGMs), as a parsimonious approach to identify the local connection mechanisms behind observed global network structure. Efforts are reviewed on the quest for basic organizational properties of human brain networks, as well as on the identification of predictive biomarkers of neurological diseases such as stroke. We conclude with a discussion on how emerging results and tools from statistical graph modeling, associated with forthcoming improvements in experimental data acquisition, could lead to a finer probabilistic description of complex systems in network neuroscience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源