论文标题
R-WHONET:使用转移学习的重新校准的车轮探光神经网络用于车辆定位
R-WhONet: Recalibrated Wheel Odometry Neural Network for Vehicular Positioning using Transfer Learning
论文作者
论文摘要
本文提出了一种转移学习方法,以重新校准我们先前开发的车轮探针神经网络(WHONET),以在全球导航卫星系统(GNSS)不可用的环境中进行车辆定位。已显示WHONET具有学习车轮速度测量中不确定性的能力,以校正和准确的车辆定位。这些不确定性可能表现为轮胎压力因在泥泞和不平坦的地形或车轮滑动上的驾驶而变化。但是,关注数据驱动方法(例如WHONET模型)的普遍原因通常是无法将模型推广到新车辆的原因。在机器学习模型在特定领域进行培训但部署在另一个领域的情况下,该模型的性能降低了。在现实生活中,从变化到车辆的动力学到传感器噪声的新模式分布,有几个因素对这种降解有影响,偏见会使测试传感器数据的数据因训练数据而异。因此,挑战是探索允许训练有素的机器学习模型自发适应新车辆域的技术。因此,我们提出了重新校准的轮循环神经网络(R-WHONET),该神经网络将WHONET模型从其源域(最初训练该模型的车辆和环境)调整到目标域(将在部署训练有素的模型的新车辆上)。通过在几种GNSS中断场景上进行性能评估 - 短期复杂驾驶方案以及长期GNSS中断方案。我们证明,在源域中训练的模型并不能很好地推广到目标域中的新车辆。但是,我们表明,我们的新提议的框架将WHONET模型对目标域中的新车辆的概括提高了32%。
This paper proposes a transfer learning approach to recalibrate our previously developed Wheel Odometry Neural Network (WhONet) for vehicle positioning in environments where Global Navigation Satellite Systems (GNSS) are unavailable. The WhONet has been shown to possess the capability to learn the uncertainties in the wheel speed measurements needed for correction and accurate positioning of vehicles. These uncertainties may be manifested as tyre pressure changes from driving on muddy and uneven terrains or wheel slips. However, a common cause for concern for data-driven approaches, such as the WhONet model, is usually the inability to generalise the models to a new vehicle. In scenarios where machine learning models are trained in a specific domain but deployed in another domain, the model's performance degrades. In real-life scenarios, several factors are influential to this degradation, from changes to the dynamics of the vehicle to new pattern distributions of the sensor's noise, and bias will make the test sensor data vary from training data. Therefore, the challenge is to explore techniques that allow the trained machine learning models to spontaneously adjust to new vehicle domains. As such, we propose the Recalibrated-Wheel Odometry neural Network (R-WhONet), that adapts the WhONet model from its source domain (a vehicle and environment on which the model is initially trained) to the target domain (a new vehicle on which the trained model is to be deployed). Through a performance evaluation on several GNSS outage scenarios - short-term complex driving scenarios, and on longer-term GNSS outage scenarios. We demonstrate that a model trained in the source domain does not generalise well to a new vehicle in the target domain. However, we show that our new proposed framework improves the generalisation of the WhONet model to new vehicles in the target domains by up to 32%.