论文标题

通过学习的滑移模型和轨迹适应的主动滑动控制

Proactive slip control by learned slip model and trajectory adaptation

论文作者

Nazari, Kiyanoush, Mandil, Willow, E, Amir Ghalamzan

论文摘要

本文提出了一种在机器人操纵运动中处理物体滑移的新型控制方法。在许多机器人抓握和操纵任务中,滑移是失败的主要原因。现有工程增加了抓地力以避免/控制滑移。但是,当(i)机器人无法增加抓地力时,这可能是不可行的 - 最大抓地力已被施加,或(ii)增加的力损坏了抓地物物体,例如软果。此外,机器人在物体表面形成稳定的掌握时固定了握力,并且在实时操作过程中更改握紧力可能不是有效的控制政策。我们提出了一种新型的控制方法,以避免滑移,包括学习的动作条件的滑移预测指标和受约束的优化器,避免了预测的机器人动作。我们通过一系列真实机器人测试案例显示了拟议的轨迹适应方法的有效性。我们的实验结果表明,我们提出的数据驱动的预测控制器可以控制训练中看不见的物体的滑动。

This paper presents a novel control approach to dealing with object slip during robotic manipulative movements. Slip is a major cause of failure in many robotic grasping and manipulation tasks. Existing works increase grip force to avoid/control slip. However, this may not be feasible when (i) the robot cannot increase the gripping force -- the max gripping force is already applied or (ii) increased force damages the grasped object, such as soft fruit. Moreover, the robot fixes the gripping force when it forms a stable grasp on the surface of an object, and changing the gripping force during real-time manipulation may not be an effective control policy. We propose a novel control approach to slip avoidance including a learned action-conditioned slip predictor and a constrained optimiser avoiding a predicted slip given a desired robot action. We show the effectiveness of the proposed trajectory adaptation method with receding horizon controller with a series of real-robot test cases. Our experimental results show our proposed data-driven predictive controller can control slip for objects unseen in training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源