论文标题

坐标转换下的异常检测

Anomaly Detection under Coordinate Transformations

论文作者

Kasieczka, Gregor, Mastandrea, Radha, Mikuni, Vinicius, Nachman, Benjamin, Pettee, Mariel, Shih, David

论文摘要

越来越需要基于机器学习的异常检测策略,以扩大大型强子对撞机(LHC)和其他地方的标准模型(BSM)物理的搜索。任何异常检测方法的第一步是指定可观察结果,然后使用它们来决定一组异常事件。一种常见的选择是选择概率密度较低的事件。众所周知的事实是,概率密度在坐标转换下并不不变,因此灵敏度可以取决于坐标的初始选择。更广泛的机器学习社区最近将坐标敏感性与异常检测联系起来,我们的目标是将对这个问题的认识带入不断增长的有关异常检测的高能量物理学文献。除了分析解释外,我们还提供了来自简单的随机变量和LHC奥运会数据集的数值示例,这些示例显示使用概率密度作为异常得分如何导致事件被归类为异常或不依赖于坐标框架。

There is a growing need for machine learning-based anomaly detection strategies to broaden the search for Beyond-the-Standard-Model (BSM) physics at the Large Hadron Collider (LHC) and elsewhere. The first step of any anomaly detection approach is to specify observables and then use them to decide on a set of anomalous events. One common choice is to select events that have low probability density. It is a well-known fact that probability densities are not invariant under coordinate transformations, so the sensitivity can depend on the initial choice of coordinates. The broader machine learning community has recently connected coordinate sensitivity with anomaly detection and our goal is to bring awareness of this issue to the growing high energy physics literature on anomaly detection. In addition to analytical explanations, we provide numerical examples from simple random variables and from the LHC Olympics Dataset that show how using probability density as an anomaly score can lead to events being classified as anomalous or not depending on the coordinate frame.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源