论文标题

在存在准碘潜力的情况下,二聚基塔夫链的临界和拓扑阶段

Critical and Topological Phases of Dimerized Kitaev Chain in Presence of Quasiperiodic Potential

论文作者

Roy, Shilpi, Nabi, Sk Noor, Basu, Saurabh

论文摘要

我们研究了具有P波超导相关性和准二焦调节化学电位的二聚kitaev链的定位和拓扑特性。关于本地化研究,我们证明了不同阶段的存在,例如,扩展相,临界(中间)阶段以及由于二聚化与现场准碘潜力之间的竞争而产生的局部阶段。最有趣的是,临界阶段包括两个不同的迁移率边缘,它们在扩展到局部阶段之间以及关键(多重法)和局部阶段之间存在。我们采用逆参与率,分形维度和水平间距进行分析。随后,进行有限尺寸的分析以提供我们的发现的支持。此外,我们通过计算系统中存在的Majorana零模式的真实空间绕组数量和数量来研究零能量边缘模式的拓扑特性。我们特别说明,我们的模型表现出从拓扑微不足道到非平凡阶段(拓扑阶段)的相变,超出了临界二聚体强度,这是在准二体势强度的影响下。最后,在存在巨大潜力的情况下,我们证明了该系统从拓扑上的非平凡到安德森本地化阶段的另一个过渡。因此,我们认为我们的结果将有助于探索与批判性和拓扑阶段有关的根本不同的物理学。

We investigate localization and topological properties of a dimerized Kitaev chain with p-wave superconducting correlations and a quasiperiodically modulated chemical potential. With regard to the localization studies, we demonstrate the existence of distinct phases, such as, the extended phase, the critical (intermediate) phase, and the localized phase that arise due to the competition between the dimerization and the onsite quasiperiodic potential. Most interestingly, the critical phase comprises of two different mobility edges that are found to exist between the extended to the localized phase, and between the critical (multifractal) and localized phases. We perform our analysis employing the inverse and the normalized participation ratios, fractal dimension, and the level spacing. Subsequently, a finite-size analysis is done to provide support of our findings. Furthermore, we study the topological properties of the zero-energy edge modes via computing the real-space winding number and number of the Majorana zero modes present in the system. We specifically illustrate that our model exhibits a phase transition from a topologically trivial to a non-trivial phase (topological Anderson phase) beyond a critical dimerization strength under the influence of the quasiperiodic potential strength. Finally, in presence of a large potential, we demonstrate that the system undergoes yet another transition from the topologically non-trivial to an Anderson localized phase. Thus, we believe that our results will aid exploration of fundamentally different physics pertaining to the critical and the topological Anderson phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源