论文标题

多孔中等方程的随机均质化

Stochastic homogenization of a porous-medium type equation

论文作者

Patrizi, Stefania

论文摘要

我们考虑随机多孔 - 中型方程的均质化问题$ \ p_ {t} u^ε=Δf\ left(t \ left(\ frac {x} {x} {\ ep} \ ep} \ right)\ om,u^\ ep ep \ right)$,具有良好的初始基础,$ ftression $ ftestion $ ftression,$ f \ f \ f \ f( $ u $,在给定的概率空间上$(\ om,\ mathcal {f},μ)$ endoved en ged,带有ergodic动态系统$ \ {t(y)\,:\,y \ in \ r^n \} $。与以前的文献\ cite {afs,fs}不同,我们不假设$ \ om $ compact。我们首先表明弱解决方案$ u^\ ep $满足方程式的动力学表述,然后我们利用了理论 \ cite {bmw}开发的“均值中的两尺度收敛”,以显示动力学溶液与形式的同质化问题的动力学溶液的收敛性 $ \ p_ {t} \ +叠加{ 然后随之而来的较弱溶液的均匀化结果。

We consider the homogenization problem for the stochastic porous-medium type equation $\p_{t} u^ε=Δf\left(T\left(\frac{x}{\ep}\right)\om,u^\ep\right)$, with a well-prepared initial datum, where $f(T(y)\om,u)$ is a stationary process, increasing in $u$, on a given probability space $(\Om, \mathcal{F}, μ)$ endowed with an ergodic dynamical system $\{T(y)\,:\,y\in\R^N\}$. Differently from the previous literature \cite{afs,fs}, here we do not assume $\Om$ compact. We first show that the weak solution $u^\ep$ satisfies a kinetic formulation of the equation, then we exploit the theory of "stochastically two-scale convergence in the mean" developed in \cite{bmw} to show convergence of the kinetic solution to the kinetic solution of an homogenized problem of the form $\p_{t} \overline{u} - Δ\overline{f}(\overline{u})=0$. The homogenization result for the weak solutions then follows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源