论文标题

分析和机器学习能力的无线网络优化和计划

Analytics and Machine Learning Powered Wireless Network Optimization and Planning

论文作者

Li, Ying, Tujkovic, Djordje, Huang, Po-Han

论文摘要

重要的是,使用有限的无线频谱资源对无线网络进行了精心优化和计划,以满足爆炸性增长的流量和最终用户的不同应用需求。考虑到无线系统的动态和复杂性的挑战以及网络的规模,希望有解决方案可以自动监视,分析,优化和计划网络。本文讨论了数据分析和机器学习能力优化和计划的方法和解决方案。这些方法包括在开放系统互连(OSI)模型的下层和上层分析表演和体验的一些重要指标,并得出最终用户感知的网络拥塞指标的指标。这些方法包括监测和诊断,例如对指标的异常检测,对性能和经验差的根本原因分析。这些方法包括通过调整建议启用网络优化,直接针对以优化最终用户体验,通过灵敏度建模和对最终用户上层指标的分析v.s。由于调整了硬件配置而导致的下层指标的改进。这些方法还包括为网络计划,交通需求分布和趋势提供预测指标,被抑制的交通需求的检测和预测以及如果网络升级(如果升级网络)的流量获得措施。这些优化和计划的方法是为了准确检测大规模的优化和升级机会,从而实现了更有效的优化和计划,例如调整单元格配置,使用更先进的技术或新的硬件升级单元格,添加更多的单元格,增加了更多的电池等,改善网络性能以及为最终的用户提供更好的体验。

It is important that the wireless network is well optimized and planned, using the limited wireless spectrum resources, to serve the explosively growing traffic and diverse applications needs of end users. Considering the challenges of dynamics and complexity of the wireless systems, and the scale of the networks, it is desirable to have solutions to automatically monitor, analyze, optimize, and plan the network. This article discusses approaches and solutions of data analytics and machine learning powered optimization and planning. The approaches include analyzing some important metrics of performances and experiences, at the lower layers and upper layers of open systems interconnection (OSI) model, as well as deriving a metric of the end user perceived network congestion indicator. The approaches include monitoring and diagnosis such as anomaly detection of the metrics, root cause analysis for poor performances and experiences. The approaches include enabling network optimization with tuning recommendations, directly targeting to optimize the end users experiences, via sensitivity modeling and analysis of the upper layer metrics of the end users experiences v.s. the improvement of the lower layers metrics due to tuning the hardware configurations. The approaches also include deriving predictive metrics for network planning, traffic demand distributions and trends, detection and prediction of the suppressed traffic demand, and the incentives of traffic gains if the network is upgraded. These approaches of optimization and planning are for accurate detection of optimization and upgrading opportunities at a large scale, enabling more effective optimization and planning such as tuning cells configurations, upgrading cells capacity with more advanced technologies or new hardware, adding more cells, etc., improving the network performances and providing better experiences to end users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源