论文标题

通过机器学习技术计算美国篮子衍生工具的XVA

Computing XVA for American basket derivatives by Machine Learning techniques

论文作者

Goudenege, Ludovic, Molent, Andrea, Zanette, Antonino

论文摘要

总价值调整(XVA)是将价值变化添加到衍生产品的价格中,以考虑双边违约风险和资金成本。在本文中,我们为美国篮子衍生工具计算了这样的溢价,其收益取决于多个基础。特别是,在我们的模型中,那些基础应该遵循多维黑色choles随机模型。为了确定XVA,我们遵循Burgard和Kjaer \ cite {Burgard2010pde}引入的方法,然后由Arregui等人应用。 \ cite {arregui2017pde,arregui2019monte}用于一维的美国衍生工具。 XVA对篮子衍生物的评估特别具有挑战性,因为几个底层的存在导致了高维控制问题。我们通过诉诸高斯流程回归来解决这样的障碍,这是一种机器学习技术,可以有效地解决维度的诅咒。此外,使用数值技术(例如控制变体)是提高提出方法准确性的强大工具。本文包括几个数值实验的结果,这些实验证实了所提出的方法的良好性。

Total value adjustment (XVA) is the change in value to be added to the price of a derivative to account for the bilateral default risk and the funding costs. In this paper, we compute such a premium for American basket derivatives whose payoff depends on multiple underlyings. In particular, in our model, those underlying are supposed to follow the multidimensional Black-Scholes stochastic model. In order to determine the XVA, we follow the approach introduced by Burgard and Kjaer \cite{burgard2010pde} and afterward applied by Arregui et al. \cite{arregui2017pde,arregui2019monte} for the one-dimensional American derivatives. The evaluation of the XVA for basket derivatives is particularly challenging as the presence of several underlings leads to a high-dimensional control problem. We tackle such an obstacle by resorting to Gaussian Process Regression, a machine learning technique that allows one to address the curse of dimensionality effectively. Moreover, the use of numerical techniques, such as control variates, turns out to be a powerful tool to improve the accuracy of the proposed methods. The paper includes the results of several numerical experiments that confirm the goodness of the proposed methodologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源